Computer Vision-Based Deep Learning Algorithms for Detecting Marine Life and Physical Phenomena from Acoustic Backscatter Time Series
基于计算机视觉的深度学习算法,用于从声学反向散射时间序列中检测海洋生物和物理现象
基本信息
- 批准号:576751-2022
- 负责人:
- 金额:$ 2.19万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Alliance Grants
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Large quantities of data are constantly acquired during underwater acoustic surveys for environmental monitoring and resources management. The data, visualized as 2D images, are typically analyzed manually or semi-automatically by experts (marine biologists, acousticians, oceanographers), which is time-consuming and prone to errors and inter-expert disagreements. The goal of the proposed research is to develop new software tools for the automated processing and analysis of underwater acoustic data acquired with echosounders, using computer vision-based deep learning methods.We anticipate that this research, carried out in partnership with ASL Environmental Sciences Inc., a British Columbian company, will allow for the automatic detection of marine life, such as eulachon, sandlance, arctic cod, jellyfish, zooplankton, as well as various phenomena near the sea surface and sea bottom, such as air bubbles, waves, ice keels, and suspended sediments, from underwater acoustic data. The potential impacts are significant with respect to efforts in species abundance tracking and environmental monitoring, allowing for a switch from the traditional data analyses towards novel automatic methods reducing processing times, required man-power, and inconsistencies in the results. In addition, this research focuses on regions (depths) that are typically discarded as too difficult to analyze manually. An impact of the automated processing associated with this research is that vast amounts of potentially valuable data may be analyzed rather than discarded, offering a more comprehensive picture of the oceans.The topic is of high importance to Canada as a global leader in sustainable fisheries and ocean resource management, and in research around underwater climate change impacts. The developed software will benefit Canada by providing Canadian researchers with improved and economical means for acoustic data analysis.
在进行环境监测和资源管理的水下声学勘测期间,不断获得大量数据。可视化为2D图像的数据通常由专家(海洋生物学家,声学家,海洋学家)手动或半自动分析,这是耗时的,并且容易出现错误和专家间的分歧。拟议研究的目标是开发新的软件工具,用于使用基于计算机视觉的深度学习方法自动处理和分析回声测深仪采集的水声数据。我们预计,这项与ASL环境科学公司合作开展的研究,不列颠哥伦比亚省的一家公司,将允许从水下声学数据中自动探测海洋生物,如eulachon、sandlance、北极鳕鱼、水母、浮游动物,以及海面和海底附近的各种现象,如气泡、波浪、冰龙骨和悬浮沉积物。潜在的影响是显着的物种丰度跟踪和环境监测方面的努力,允许从传统的数据分析转向新的自动方法,减少处理时间,所需的人力,并在结果的不一致性。此外,本研究重点关注通常因手动分析太困难而被丢弃的区域(深度)。与这项研究相关的自动化处理的一个影响是,可以分析而不是丢弃大量潜在有价值的数据,从而提供更全面的海洋情况。作为可持续渔业和海洋资源管理的全球领导者,加拿大在水下气候变化影响的研究方面非常重要。开发的软件将为加拿大研究人员提供改进且经济的声学数据分析方法,使加拿大受益。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BranzanAlbu, AlexandraA其他文献
BranzanAlbu, AlexandraA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
老年人群视障风险VISION管控模式构建与实证研究
- 批准号:71974198
- 批准年份:2019
- 资助金额:48.5 万元
- 项目类别:面上项目
相似海外基金
CAREER: Reinventing Computer Vision through Bio-inspired Retinomorphic Vision Sensors, Corticomorphic Compute-In-Memory Processors and Event-based Algorithms
职业:通过仿生视网膜形态视觉传感器、皮质形态内存计算处理器和基于事件的算法重塑计算机视觉
- 批准号:
2338171 - 财政年份:2024
- 资助金额:
$ 2.19万 - 项目类别:
Continuing Grant
Data assimilation performance analysis of existing bridges by multi-level computer vision-based measurement
基于多级计算机视觉测量的现有桥梁数据同化性能分析
- 批准号:
23H01487 - 财政年份:2023
- 资助金额:
$ 2.19万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
I-Corps: Computer Vision-Based Intelligent Service Recommendation System
I-Corps:基于计算机视觉的智能服务推荐系统
- 批准号:
2223872 - 财政年份:2022
- 资助金额:
$ 2.19万 - 项目类别:
Standard Grant
Development of the Real-time Lifting Assessment tool based on Computer Vision
基于计算机视觉的实时举升评估工具开发
- 批准号:
576741-2022 - 财政年份:2022
- 资助金额:
$ 2.19万 - 项目类别:
Alliance Grants
Developing an Innovative Platform for Modeling Active Road User Interactions and Safety: Integration of Computer Vision, Agent-based, and Machine Learning Models
开发用于对主动道路用户交互和安全进行建模的创新平台:计算机视觉、基于代理和机器学习模型的集成
- 批准号:
RGPIN-2019-06688 - 财政年份:2022
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Plastic packaging, a complete recognition and monitoring system based on AI and fusing RGB-based computer vision with Near Infrared spectral Imaging (NIR SI)
塑料包装,基于人工智能并将基于 RGB 的计算机视觉与近红外光谱成像 (NIR SI) 融合的完整识别和监控系统
- 批准号:
10020954 - 财政年份:2022
- 资助金额:
$ 2.19万 - 项目类别:
Collaborative R&D
New unsupervised Bayesian and energy-based models dedicated to image processing and computer vision applications
新的无监督贝叶斯和基于能量的模型致力于图像处理和计算机视觉应用
- 批准号:
RGPIN-2022-03654 - 财政年份:2022
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
SBIR Phase I: Smartphone-Based Machine Learning and Computer Vision for Cost-Effective Verification of Forest Carbon Offsets
SBIR 第一阶段:基于智能手机的机器学习和计算机视觉,用于经济高效地验证森林碳抵消
- 批准号:
2212767 - 财政年份:2022
- 资助金额:
$ 2.19万 - 项目类别:
Standard Grant
TOPIC 425 - COMPUTER VISION-BASED ANALYSIS OF GAIT FOR THE ASSESSMENT OF GERIATRIC CANCER
主题 425 - 用于评估老年癌症的基于计算机视觉的步态分析
- 批准号:
10498246 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Physics-based colour models in computer vision, colour science, graphics and multimedia
计算机视觉、色彩科学、图形和多媒体中基于物理的色彩模型
- 批准号:
RGPIN-2017-03886 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual