Machine Learning on 3D Ultrasound Images and Wearable IoT Data for Brace Treatment of Spinal Deformities
基于 3D 超声图像和可穿戴物联网数据的机器学习用于脊柱畸形的支架治疗
基本信息
- 批准号:RGPIN-2020-04415
- 负责人:
- 金额:$ 2.4万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The science supporting the effectiveness of bracing to control spinal deformity is not clear. The mechanical response of the spine to physical loadings cannot be examined in real-time. This research aims to develop, advance and integrate monitoring technologies to investigate and understand how the biomechanical loadings applied from a simulated brace affects the internal spinal alignment. Four engineering challenges will be investigated:1) creation of a low cost 3D portable wireless ultrasound device, 2) development of machine learning (ML) algorithms to automatically extract 3D parameters from ultrasound images, 3) development of a software platform to record loads, positions and directions of pressure applied to a body and correlate with the internal alignment changes via real-time 3D ultrasound, and 4) design and development of wearable Internet-of-Things (IoT) devices to monitor the brace usage and control the interface pressure between the brace and patient's body to understand how spinal alignment may be optimized on an individual basis. A low cost 2D portable wireless ultrasound (US) device integrated with an electromagnetic position and orientation tracking system will be enhanced to create a 3D US scanner. The accuracy and the speed of the reconstruction process are important for real-time applications. ML algorithms based on convolutional neural networks will be developed to automatically extract parameters from ultrasound images. 300 US images will be used for training, 100 cases for testing and 100 cases for validation. This approach can reduce human measurement errors and training to allow non-ultrasound experts to extract information. A software platform integrated with a wireless sensing network to investigate the internal spinal alignment changes with different loads in real-time will be developed. A wireless pressure control sensor network built inside a custom standing frame has been embedded into the pressure pads to track spatial and pressure information. The developed portable 3D US will be used to capture internal alignment changes while manipulating the orientation, location and measured pressure from value of pressure pads. This innovate tool helps orthotists to obtain real-time feedback during brace design. An IoT device consists of a microcomputer system, a pressure sensor, air bladders embedded under the pressure area, a pump and valves feedback system, a temperature sensor and orientation sensor will be designed and built to monitor brace wear time and control wear brace tightness during daily living. This device can be programmed for individual needs to optimize brace effectiveness. The results of this research will be a suite of tools which can image the internal spinal alignment without ionizing radiation in real-time. The ML algorithms can be applied to other medical imaging applications with different training sets. The wearable IoT devices can be utilized for many other health monitoring systems.
支持支具控制脊柱畸形有效性的科学尚不清楚。脊柱对物理载荷的机械响应无法实时检查。本研究旨在开发、推进和整合监测技术,以调查和了解模拟支具施加的生物力学载荷如何影响脊柱内部对线。将研究四个工程挑战:1)创建低成本3D便携式无线超声设备,2)开发机器学习(ML)算法以从超声图像中自动提取3D参数,3)开发软件平台以记录施加到身体的压力的负载,位置和方向,并通过实时3D超声与内部对齐变化相关联,以及4)设计和开发可穿戴物联网(IoT)设备以监测支具使用并控制支具和患者身体之间的界面压力,以了解如何在个体基础上优化脊柱对齐。 一个低成本的2D便携式无线超声(US)设备集成了电磁位置和方向跟踪系统将被增强,以创建一个3D US扫描仪。重建过程的精度和速度对于实时应用是重要的。将开发基于卷积神经网络的ML算法,以自动从超声图像中提取参数。将使用300张US图像进行培训,100例用于测试,100例用于确认。这种方法可以减少人为测量误差,并允许非超声专家进行培训以提取信息。 将开发一个与无线传感网络集成的软件平台,以实时调查不同载荷下的脊柱内部对准变化。内置于定制站立框架内的无线压力控制传感器网络已嵌入压力垫中,以跟踪空间和压力信息。所开发的便携式3D US将用于捕获内部对准变化,同时操纵方向、位置和来自压力垫值的测量压力。这个创新的工具帮助矫形师在支具设计过程中获得实时反馈。 物联网设备由微计算机系统、压力传感器、嵌入压力区域下的气囊、泵和阀反馈系统、温度传感器和方位传感器组成,将设计和建造用于在日常生活中监测支具佩戴时间和控制佩戴支具的松紧度。该设备可以根据个人需求进行编程,以优化支具的有效性。 这项研究的结果将是一套工具,可以在没有电离辐射的情况下实时成像脊柱内部对准。ML算法可以应用于具有不同训练集的其他医学成像应用。可穿戴物联网设备可以用于许多其他健康监测系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lou, Edmond其他文献
Score distribution of the scoliosis quality of life index questionnaire in different subgroups of patients with adolescent idiopathic scoliosis
- DOI:
10.1097/brs.0b013e3180b9f7a5 - 发表时间:
2007-07-15 - 期刊:
- 影响因子:3
- 作者:
Parent, Eric C.;Hill, Doug;Lou, Edmond - 通讯作者:
Lou, Edmond
An objective measurement of brace usage for the treatment of adolescent idiopathic scoliosis
- DOI:
10.1016/j.medengphy.2010.10.016 - 发表时间:
2011-04-01 - 期刊:
- 影响因子:2.2
- 作者:
Lou, Edmond;Hill, Doug;Raso, Jim - 通讯作者:
Raso, Jim
Development and Experimental Evaluation of a Novel Piezoresistive MEMS Strain Sensor
- DOI:
10.1109/jsen.2011.2113374 - 发表时间:
2011-10-01 - 期刊:
- 影响因子:4.3
- 作者:
Mohammed, Ahmed A. S.;Moussa, Walied A.;Lou, Edmond - 通讯作者:
Lou, Edmond
Assessment of curve progression on children with idiopathic scoliosis using ultrasound imaging method
- DOI:
10.1007/s00586-017-5457-0 - 发表时间:
2018-09-01 - 期刊:
- 影响因子:2.8
- 作者:
Zheng, Rui;Hill, Doug;Lou, Edmond - 通讯作者:
Lou, Edmond
Optimization of geometric characteristics to improve sensing performance of MEMS piezoresistive strain sensors
- DOI:
10.1088/0960-1317/20/1/015015 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:2.3
- 作者:
Mohammed, Ahmed A. S.;Moussa, Walied A.;Lou, Edmond - 通讯作者:
Lou, Edmond
Lou, Edmond的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lou, Edmond', 18)}}的其他基金
Utilizing and testing a self-monitored 3D MEMS strain sensor for SHM of mining and pipeline structures
利用和测试用于采矿和管道结构 SHM 的自监控 3D MEMS 应变传感器
- 批准号:
543829-2019 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Collaborative Research and Development Grants
Machine Learning on 3D Ultrasound Images and Wearable IoT Data for Brace Treatment of Spinal Deformities
基于 3D 超声图像和可穿戴物联网数据的机器学习用于脊柱畸形的支架治疗
- 批准号:
RGPIN-2020-04415 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Machine Learning on 3D Ultrasound Images and Wearable IoT Data for Brace Treatment of Spinal Deformities
基于 3D 超声图像和可穿戴物联网数据的机器学习用于脊柱畸形的支架治疗
- 批准号:
RGPIN-2020-04415 - 财政年份:2020
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
3D Ultrasound Imaging and Spatial Pressure Measurement System to Investigate Spinal Curve Response Imposed by a Simulated Brace
3D 超声成像和空间压力测量系统用于研究模拟支架施加的脊柱曲线响应
- 批准号:
RGPIN-2015-04176 - 财政年份:2019
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
3D Ultrasound Imaging and Spatial Pressure Measurement System to Investigate Spinal Curve Response Imposed by a Simulated Brace
3D 超声成像和空间压力测量系统用于研究模拟支架施加的脊柱曲线响应
- 批准号:
RGPIN-2015-04176 - 财政年份:2018
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Optimization and Enhancement of 3D Spectra Scanner and 3D printing configurations for Spinal Orthosis****************
脊柱矫形器 3D 光谱扫描仪和 3D 打印配置的优化和增强****************
- 批准号:
535908-2018 - 财政年份:2018
- 资助金额:
$ 2.4万 - 项目类别:
Engage Grants Program
Estimate Trajectory of the Ultrasound Scan using Inertia Sensor
使用惯性传感器估计超声扫描的轨迹
- 批准号:
522817-2017 - 财政年份:2017
- 资助金额:
$ 2.4万 - 项目类别:
Engage Grants Program
3D Ultrasound Imaging and Spatial Pressure Measurement System to Investigate Spinal Curve Response Imposed by a Simulated Brace
3D 超声成像和空间压力测量系统用于研究模拟支架施加的脊柱曲线响应
- 批准号:
RGPIN-2015-04176 - 财政年份:2017
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Enhancement of hot-cold sensation testing device
冷热感觉测试装置的改进
- 批准号:
505585-2016 - 财政年份:2016
- 资助金额:
$ 2.4万 - 项目类别:
Engage Plus Grants Program
3D Ultrasound Imaging and Spatial Pressure Measurement System to Investigate Spinal Curve Response Imposed by a Simulated Brace
3D 超声成像和空间压力测量系统用于研究模拟支架施加的脊柱曲线响应
- 批准号:
RGPIN-2015-04176 - 财政年份:2016
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
基于3D Slicer的颅内动脉瘤破裂风险评估机器学习模型开发及临床推广应用
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
面向Web3D虚拟学习空间的教育智能体系统构建与应用
- 批准号:2025JJ80330
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于3D深度学习影像组学构建T1期浸润性肺腺癌气腔播散预测模型
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
深度学习结合MR 3D-TFE多区域影像组学预测脑膜瘤生物学行为的临床应用研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
模拟3D人体定位ICU压力性损伤临床真实案例智能教学库的建设与应用研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
图像3D人体重建的不确定性建模和数据
增广关键技术研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
基于3D多视图Mamba模型的儿童难治性癫
痫病灶分割方法研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
腹腔镜胃肠吻合3D打印水凝胶模型研制、学习曲线评估以及培训体系建立
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于两阶段3D U-Net深度学习模型的头颅CT引导三叉神经痛射频穿刺智能教学系统的研发与验证
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于深度学习与数字图像处理从2D微结构预测3D扩散迂曲度
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Collaborative Research: OAC Core: Large-Scale Spatial Machine Learning for 3D Surface Topology in Hydrological Applications
合作研究:OAC 核心:水文应用中 3D 表面拓扑的大规模空间机器学习
- 批准号:
2414185 - 财政年份:2024
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Development of production system using machine learning method for the made-to-order 3D design by linguistic expression
使用机器学习方法开发生产系统,通过语言表达进行定制 3D 设计
- 批准号:
22H00956 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Catch the waves - a machine learning approach to map brown dwarf and imaged exoplanet atmospheres in 3D
合作研究:捕捉波浪 - 一种机器学习方法,以 3D 方式绘制褐矮星和成像系外行星大气层
- 批准号:
2206317 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
A machine learning approach to physically self-consistent 3D general circulation models in the study of sub-Neptune exoplanets with the James Webb Space Telescope
使用詹姆斯·韦伯太空望远镜研究海王星以下系外行星时采用机器学习方法实现物理上自洽的 3D 大气环流模型
- 批准号:
569321-2022 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Postgraduate Scholarships - Doctoral
Collaborative Research: Catch the waves - a machine learning approach to map brown dwarf and imaged exoplanet atmospheres in 3D
合作研究:捕捉波浪 - 一种机器学习方法,以 3D 方式绘制褐矮星和成像系外行星大气层
- 批准号:
2205913 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Characterisation of Crystalline Materials through Imaging, Image Processing and Machine Learning for 3D Shape Description
通过成像、图像处理和机器学习来表征晶体材料的 3D 形状描述
- 批准号:
2748332 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Studentship
Machine learning approaches to mine evolving 3D genomes
挖掘不断演化的 3D 基因组的机器学习方法
- 批准号:
RGPIN-2019-06439 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Traffic safety margin inference via machine learning for 3D spatial modeling
通过 3D 空间建模的机器学习进行交通安全裕度推断
- 批准号:
572807-2022 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Alliance Grants
Neural Signal Representations for Physics-Based Machine Learning and Active 3D Imaging
基于物理的机器学习和主动 3D 成像的神经信号表示
- 批准号:
DGECR-2022-00412 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Launch Supplement
Neural Signal Representations for Physics-Based Machine Learning and Active 3D Imaging
基于物理的机器学习和主动 3D 成像的神经信号表示
- 批准号:
RGPIN-2022-04829 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual