Multifunctional materials: structure and properties
多功能材料:结构与性能
基本信息
- 批准号:RGPIN-2018-05485
- 负责人:
- 金额:$ 5.54万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nanostructured materials are interesting model systems due to their unusual, size-dependent and often unexpected properties. A deeper knowledge of such systems holds the promise of optimizing the performance of electronic and optoelectronic devices, and could be the key to master promising technologies (e.g. solar cells, light emitting devices). In addition, the ability to control structural synthesis on the nanometer length scale will allow to develop new functional materials with unprecedented properties. Recent studies highlighted the potential of multifunctional materials, which simultaneously exhibit two or more functionalities, also showing that the properties of such materials are often enhanced at the nanoscale. Given the undeniable scientific and technological interest in strengthening research and training in Nanoscale Science and Technology in Canada, I am leading a vigorous research program on the growth, processing and characterization of multifunctional nanomaterials. We synthesize such systems, then employ advanced characterization techniques for their morphological and chemical analysis, with the ultimate goal of understanding and controlling structure/property relations. Subsequently we implement these nanoscale building blocks into optoelectronic devices. We focus on optimizing device performance such as Photovoltaic (PV) efficiency, and using these materials to generate H2. This approach has been highly successful, leading to the world record of power conversion efficiency in Ferroelectric PV [Nature Photonics 9, 61 (2015)] and other instances of breakthrough performance in Quantum Dot Solar Cells [Adv.Func.Mater. 27, 1401468 (2017)] and Photoelectrochemical H2 production [Nano Energy 27, 265 (2016); Nano Energy 31, 441 (2017)]. In conclusion, the proposed research program describes a balanced mix between building on recent successes and pursuing several novel directions of discovery. It will foster focused multidisciplinary research in advanced materials processing and characterization and device fabrication and testing, consistently with specific needs of the high technology Canadian industry. In particular, it will contribute to (i) identify optimal synthesis conditions for MF films to enhance their properties for ferroelectric PV; (ii) probe QD/metal oxide interfaces and exploit them to optimize the performance of QDSCs, leading to record values of PCE; (iii) exploit core/shell QDs to improve the long term stability of PEC devices for H2 production; (iv) understand the effect of carbon doping in improving the stability and efficiency of DSSCs; (v) investigate the transition states during surface polymerization reactions and use this knowledge to realize large scale 2D conjugated polymers. Last but not least, we will train highly qualified personnel to respond to the scientific and technological challenges of modern society.
纳米结构材料是一种有趣的模型系统,因为它们具有不寻常的、依赖于尺寸的和经常意想不到的特性。对这些系统的深入了解有望优化电子和光电器件的性能,并且可能是掌握有前途的技术(例如太阳能电池,发光器件)的关键。此外,在纳米尺度上控制结构合成的能力将允许开发具有前所未有的性能的新功能材料。最近的研究强调了多功能材料的潜力,这些材料同时表现出两种或多种功能,也表明这些材料的性能通常在纳米级得到增强。鉴于在加拿大加强纳米科学和技术的研究和培训不可否认的科学和技术的兴趣,我正在领导一个关于多功能纳米材料的生长,加工和表征的蓬勃发展的研究计划。我们合成这样的系统,然后采用先进的表征技术,其形态和化学分析,理解和控制结构/性能关系的最终目标。随后,我们将这些纳米级构建块实现到光电器件中。我们专注于优化器件性能,如光伏(PV)效率,并使用这些材料来产生H2。这种方法已经非常成功,导致铁电PV中的功率转换效率的世界纪录[Nature Photonics 9,61(2015)]和量子点太阳能电池中的突破性性能的其他实例[Adv.Func.Mater. 27,1401468(2017)]和光电化学H2生产[Nano Energy 27,265(2016); Nano Energy 31,441(2017)]。总之,拟议的研究计划描述了在最近的成功和追求几个新的发现方向之间的平衡组合。它将促进先进材料加工和表征以及设备制造和测试方面的重点多学科研究,符合加拿大高科技产业的具体需求。特别是,它将有助于(i)确定MF膜的最佳合成条件以增强其用于铁电PV的性质;(ii)探测QD/金属氧化物界面并利用它们来优化QDSC的性能,从而导致PCE的创纪录值;(iii)利用核/壳QD来改善用于H2生产的PEC器件的长期稳定性;(iv)了解碳掺杂在提高DSSC稳定性和效率方面的作用;(v)研究表面聚合反应过程中的过渡态,并利用这些知识实现大规模的2D共轭聚合物。最后,我们将培养高素质的人才,以应对现代社会的科学和技术挑战。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rosei, Federico其他文献
Eco-friendly quantum dots for liquid luminescent solar concentrators
- DOI:
10.1039/c9ta09586a - 发表时间:
2020-01-28 - 期刊:
- 影响因子:11.9
- 作者:
Liu, Xin;Luo, Bing;Rosei, Federico - 通讯作者:
Rosei, Federico
Hole-extraction and photostability enhancement in highly efficient inverted perovskite solar cells through carbon dot-based hybrid material
- DOI:
10.1016/j.nanoen.2019.05.084 - 发表时间:
2019-08-01 - 期刊:
- 影响因子:17.6
- 作者:
Benetti, Daniele;Jokar, Efat;Rosei, Federico - 通讯作者:
Rosei, Federico
High performance BiFeO3 ferroelectric nanostructured photocathodes
- DOI:
10.1063/5.0013192 - 发表时间:
2020-08-28 - 期刊:
- 影响因子:4.4
- 作者:
Das, Shyamashis;Fourmont, Paul;Rosei, Federico - 通讯作者:
Rosei, Federico
The critical role of water in spider silk and its consequence for protein mechanics
- DOI:
10.1039/c1nr10502g - 发表时间:
2011-01-01 - 期刊:
- 影响因子:6.7
- 作者:
Brown, Cameron P.;MacLeod, Jennifer;Rosei, Federico - 通讯作者:
Rosei, Federico
Ultrafast Microwave Hydrothermal Synthesis of BiFeO3 Nanoplates
- DOI:
10.1111/jace.12473 - 发表时间:
2013-10-01 - 期刊:
- 影响因子:3.9
- 作者:
Li, Shun;Nechache, Riad;Rosei, Federico - 通讯作者:
Rosei, Federico
Rosei, Federico的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rosei, Federico', 18)}}的其他基金
Development of high power photoactive Erbium and Erbium-Ytterbium doped fibers for ultra-fast satellite telecommunications
开发用于超快卫星通信的高功率光敏掺铒和铒掺镱光纤
- 批准号:
561014-2020 - 财政年份:2021
- 资助金额:
$ 5.54万 - 项目类别:
Alliance Grants
Multifunctional materials: structure and properties
多功能材料:结构与性能
- 批准号:
RGPIN-2018-05485 - 财政年份:2021
- 资助金额:
$ 5.54万 - 项目类别:
Discovery Grants Program - Individual
Tandem luminescent solar concentrators based on rare earth doped SiAlON and quantum dot thin films
基于稀土掺杂 SiAlON 和量子点薄膜的串联发光太阳能聚光器
- 批准号:
567194-2021 - 财政年份:2021
- 资助金额:
$ 5.54万 - 项目类别:
Alliance Grants
Plasmonic optical biosensor for COVID-19 detection
用于检测 COVID-19 的等离激元光学生物传感器
- 批准号:
555353-2020 - 财政年份:2020
- 资助金额:
$ 5.54万 - 项目类别:
Alliance Grants
Photoelectrochemical biosensing for COVID-19: virus and antibodies
COVID-19 的光电化学生物传感:病毒和抗体
- 批准号:
555354-2020 - 财政年份:2020
- 资助金额:
$ 5.54万 - 项目类别:
Alliance Grants
COVID-19 Prevention: Hybrid Polymer/Photoactive Ceramic Self-Disinfecting Coating
COVID-19 预防:混合聚合物/光敏陶瓷自消毒涂层
- 批准号:
552756-2020 - 财政年份:2020
- 资助金额:
$ 5.54万 - 项目类别:
Alliance Grants
New solid electrolyte architecture for lithium metal based battery
用于锂金属电池的新型固体电解质架构
- 批准号:
523762-2018 - 财政年份:2020
- 资助金额:
$ 5.54万 - 项目类别:
Collaborative Research and Development Grants
相似国自然基金
CuAgSe基热电材料的结构特性与构效关系研究
- 批准号:22375214
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
碳/碳复合材料膺复体仿生喉气管重建动物模型建立
- 批准号:51172002
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
Journal of Materials Science & Technology
- 批准号:51024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
天然生物材料的多尺度力学与仿生研究
- 批准号:10732050
- 批准年份:2007
- 资助金额:200.0 万元
- 项目类别:重点项目
均匀纳米孔低介电材料的可控制备研究
- 批准号:90606011
- 批准年份:2006
- 资助金额:30.0 万元
- 项目类别:重大研究计划
一维和二维的可调谐特异性电介质材料
- 批准号:50477048
- 批准年份:2004
- 资助金额:26.0 万元
- 项目类别:面上项目
相似海外基金
Multifunctional Intelligent Hierarchical Fibrous Biomaterials Integrated with Multimodal Biosensing and Feedback-Based Interventions for Healing Infected Chronic Wounds
多功能智能分层纤维生物材料与多模式生物传感和基于反馈的干预措施相结合,用于治愈感染的慢性伤口
- 批准号:
10861531 - 财政年份:2023
- 资助金额:
$ 5.54万 - 项目类别:
Multifunctional Biodegradable Zwitterionic Polymer-Drug Conjugates for Multidrug Co-Delivery
用于多药联合递送的多功能可生物降解两性离子聚合物-药物缀合物
- 批准号:
10638101 - 财政年份:2023
- 资助金额:
$ 5.54万 - 项目类别:
Multifunctional Colloidal Gel for Dentin Formation
用于牙本质形成的多功能胶体凝胶
- 批准号:
10452975 - 财政年份:2022
- 资助金额:
$ 5.54万 - 项目类别:
Multifunctional Colloidal Gel for Dentin Formation
用于牙本质形成的多功能胶体凝胶
- 批准号:
10620203 - 财政年份:2022
- 资助金额:
$ 5.54万 - 项目类别:
Multifunctional materials: structure and properties
多功能材料:结构与性能
- 批准号:
RGPIN-2018-05485 - 财政年份:2021
- 资助金额:
$ 5.54万 - 项目类别:
Discovery Grants Program - Individual
Enzymatic Synthesis of Sugar-Derived Biosurfactants Using Multifunctional Ionic Liquids
使用多功能离子液体酶法合成糖衍生生物表面活性剂
- 批准号:
10291051 - 财政年份:2021
- 资助金额:
$ 5.54万 - 项目类别:
Multifunctional materials: structure and properties
多功能材料:结构与性能
- 批准号:
RGPIN-2018-05485 - 财政年份:2020
- 资助金额:
$ 5.54万 - 项目类别:
Discovery Grants Program - Individual
Multifunctional materials: structure and properties
多功能材料:结构与性能
- 批准号:
DGDND-2018-00013 - 财政年份:2020
- 资助金额:
$ 5.54万 - 项目类别:
DND/NSERC Discovery Grant Supplement
Multifunctional tough adhesive hydrogels to recruit, expand, and deliver tendoncells during aging and injury
多功能坚韧粘合水凝胶可在衰老和损伤期间募集、扩张和输送肌腱细胞
- 批准号:
10594125 - 财政年份:2020
- 资助金额:
$ 5.54万 - 项目类别:
Multifunctional tough adhesive hydrogels to recruit, expand, and deliver tendoncells during aging and injury
多功能坚韧粘合水凝胶可在衰老和损伤期间募集、扩张和输送肌腱细胞
- 批准号:
10855186 - 财政年份:2020
- 资助金额:
$ 5.54万 - 项目类别: