Development of intelligent avionics systems to optimize and automate aircraft trajectories, while reducing the environmental impact of aviation

开发智能航空电子系统以优化和自动化飞机轨迹,同时减少航空对环境的影响

基本信息

  • 批准号:
    RGPIN-2022-03864
  • 负责人:
  • 金额:
    $ 2.04万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Despite the impact of the COVID-19 pandemic, aviation stakeholders suggest that tomorrow's air traffic will be extremely dense. While necessary for global economic development, this expansion will pose several operational, safety, social and environmental challenges. Faced with this situation, it is crucial for the aviation industry to develop new practices and technologies to operate aircraft in a more efficient and environmentally sustainable way. The main objective of this research program is to explore new solutions for the development of intelligent avionics systems to improve air traffic management and reduce aircraft emissions, while enhancing flight safety. The word "intelligent" in this context refers to the ability to learn the performance of an aircraft, as well as the use of artificial intelligence-based techniques to control the motion of an aircraft. In the short term, this research program will focus on the development of solutions to optimize and automate the management of aircraft trajectories on the ground. However, in the longer term, the objective will be to generalize this concept from the ground to the airspace. The strategy for achieving the main objective includes three phases. First, new self-modeling algorithms will be designed to monitor and learn the performance of an aircraft. The objective here is to develop intelligent avionics systems that remain accurate over time. All mathematical model to predict air-craft trajectory, emissions and noise will be also developed during this first step. The second phase will focus on optimizing aircraft trajectories during taxiing and takeoff. Graph neural networks combined with ADS-B data will be considered to model and account ground traffic. Deterministic and evolutionary optimization algorithms will be tested, and their results compared. The optimal solution will be defined as the trajectory that minimizes time, fuel consumption, and emissions, while ensuring safety and feasibility. Finally, the third phase will be devoted to the development of new control algorithms using artificial intelligence and computer vision techniques to enable aircraft to move automatically on the ground. All methodologies will be validated using two professional and highly qualified flight simulators and real flight data. This research program aims to propose new solutions to modernize the current air transport system and move towards a more optimal and autonomous management of aircraft trajectories. In addition, the use of autonomous technologies will make flight procedures more efficient, safer and, most importantly, help reduce emissions. This research program also aims to explore the potential that artificial intelligence can bring to the aerospace field, and thus encourage industry and researchers to pursue this direction. Finally, highly qualified personnel will be trained on innovative research topics, preparing them to make a significant contribution to the Canadian aerospace industry.
尽管受到COVID-19大流行的影响,航空利益相关者表示,明天的空中交通将非常密集。虽然这对全球经济发展是必要的,但这种扩张将带来若干运营、安全、社会和环境挑战。面对这种情况,航空业必须开发新的实践和技术,以更有效和环境可持续的方式运营飞机。该研究计划的主要目标是探索开发智能航空电子系统的新解决方案,以改善空中交通管理,减少飞机排放,同时提高飞行安全。本文中的“智能”一词是指学习飞机性能的能力,以及使用基于人工智能的技术来控制飞机的运动。在短期内,该研究计划将专注于开发解决方案,以优化和自动化地面飞机轨迹的管理。然而,从长远来看,目标是将这一概念从地面推广到空气空间。实现主要目标的战略包括三个阶段。首先,将设计新的自建模算法来监控和学习飞机的性能。这里的目标是开发随着时间的推移保持准确的智能航空电子系统。在这第一步中,还将建立预测飞机轨迹、排放和噪音的所有数学模型。第二阶段将侧重于优化飞机在滑行和起飞过程中的轨迹。图形神经网络与ADS-B数据相结合,将被认为是地面交通的模型和帐户。确定性和进化优化算法将进行测试,并比较它们的结果。最佳解决方案将被定义为最大限度地减少时间,燃料消耗和排放,同时确保安全性和可行性的轨迹。最后,第三阶段将致力于利用人工智能和计算机视觉技术开发新的控制算法,使飞机能够在地面上自动移动。所有方法都将使用两个专业和高质量的飞行模拟器和真实的飞行数据进行验证。该研究计划旨在提出新的解决方案,使当前的航空运输系统现代化,并朝着更优化和自主管理飞机轨迹的方向发展。此外,自主技术的使用将使飞行程序更高效、更安全,最重要的是有助于减少排放。该研究计划还旨在探索人工智能可以为航空航天领域带来的潜力,从而鼓励工业界和研究人员追求这一方向。最后,将对高素质人员进行创新研究课题的培训,使他们为加拿大航空航天工业作出重大贡献做好准备。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ghazi, Georges其他文献

Identification and Validation of an Engine Performance Database Model for the Flight Management System
  • DOI:
    10.2514/1.i010663
  • 发表时间:
    2019-08-01
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Ghazi, Georges;Botez, Ruxandra Mihaela
  • 通讯作者:
    Botez, Ruxandra Mihaela
A Novel Fault-Tolerant Air Traffic Management Methodology Using Autoencoder and P2P Blockchain Consensus Protocol
  • DOI:
    10.3390/aerospace10040357
  • 发表时间:
    2023-04-01
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Hashemi, Seyed Mohammad;Hashemi, Seyed Ali;Ghazi, Georges
  • 通讯作者:
    Ghazi, Georges
New Adaptive Algorithm Development for Monitoring Aircraft Performance and Improving Flight Management System Predictions
  • DOI:
    10.2514/1.i010748
  • 发表时间:
    2020-02-01
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Ghazi, Georges;Gerardin, Benoit;Botez, Ruxandra Mihaela
  • 通讯作者:
    Botez, Ruxandra Mihaela
Aircraft Trajectory Prediction Enhanced through Resilient Generative Adversarial Networks Secured by Blockchain: Application to UAS-S4 Ehécatl
  • DOI:
    10.3390/app13179503
  • 发表时间:
    2023-09-01
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Hashemi, Seyed Mohammad;Hashemi, Seyed Ali;Ghazi, Georges
  • 通讯作者:
    Ghazi, Georges

Ghazi, Georges的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ghazi, Georges', 18)}}的其他基金

Development of intelligent avionics systems to optimize and automate aircraft trajectories, while reducing the environmental impact of aviation
开发智能航空电子系统以优化和自动化飞机轨迹,同时减少航空对环境的影响
  • 批准号:
    DGECR-2022-00038
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Launch Supplement

相似国自然基金

Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目

相似海外基金

Intelligent Breast Cancer DiagnOsis and MonItoring Therapeutic Response Training Network (CanDoIt)
智能乳腺癌诊断和监测治疗反应训练网络(CanDoIt)
  • 批准号:
    EP/Y03693X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Research Grant
Active Integrated Antenna for Intelligent Arrays in 6G Non-Terrestrial Networks
用于 6G 非地面网络智能阵列的有源集成天线
  • 批准号:
    EP/Y003144/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Research Grant
SBIR Phase II: Intelligent Language Learning Environment
SBIR第二阶段:智能语言学习环境
  • 批准号:
    2335265
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Cooperative Agreement
Learning to create Intelligent Solutions with Machine Learning and Computer Vision: A Pathway to AI Careers for Diverse High School Students
学习利用机器学习和计算机视觉创建智能解决方案:多元化高中生的人工智能职业之路
  • 批准号:
    2342574
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
I-Corps: Intelligent Hydroponics Growing Platform for Sustainable Agriculture
I-Corps:可持续农业的智能水培种植平台
  • 批准号:
    2345854
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
  • 批准号:
    2414474
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
Intelligent cryo-electron microscopy of G protein-coupled receptors
G 蛋白偶联受体的智能冷冻电子显微镜
  • 批准号:
    23K23818
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Towards Fundamentals of Adaptive, Collaborative and Intelligent Radar Sensing and Perception
职业:探索自适应、协作和智能雷达传感和感知的基础知识
  • 批准号:
    2340029
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Continuing Grant
NSF Convergence Accelerator Track L: Intelligent Nature-inspired Olfactory Sensors Engineered to Sniff (iNOSES)
NSF 融合加速器轨道 L:受自然启发的智能嗅觉传感器,专为嗅探而设计 (iNOSES)
  • 批准号:
    2344256
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330940
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了