CAREER: Towards Fundamentals of Adaptive, Collaborative and Intelligent Radar Sensing and Perception

职业:探索自适应、协作和智能雷达传感和感知的基础知识

基本信息

  • 批准号:
    2340029
  • 负责人:
  • 金额:
    $ 50.68万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-08-15 至 2029-07-31
  • 项目状态:
    未结题

项目摘要

Automotive radar imaging represents a pressing technological need in perception for automotive active safety and autonomous driving. Automotive radar operating at millimeter-wave frequencies (typically around 77 GHz) is indispensable due to its superior capability in measuring range, velocity, and offering better perception performance in occlusion situations under all weather conditions and much lower cost than Lidar. The state-of-the-art automotive radar is prone to mutual interference and multipath issues, and its limited angular resolution—approximately 13 degrees—is inadequate for facilitating perception tasks for fully autonomous driving. This CAREER project aims to innovate the automotive radar perception in service of well-being of individuals in society and reduction of fatal accidents on U.S. highways by exploring adaptive, collaborative sensing and radar imaging physics principles. It deepens our understanding of how such sensing can enhance the dynamic range and address the ill-posed nature of the radar imaging inverse problem. Addressing the challenges in automotive radar imaging necessitates collaboration between academia and industry. Through collaboration with automotive industry sector, this project will make the research more impactful and pertinent, hastening the transition of research findings into automotive industry applications. Autonomous vehicle research helps attract underrepresented researchers. Through K-12 outreach activities and recruiting underrepresented groups and women in engineering, this project will promote diversity in the STEM research, inspiring them to pursue advanced research in radar field. This CAREER project addresses the ill-posed inverse problem inherent in automotive radar imaging by investigation of learning based adaptive and collaborative methodologies. The project tackles the robust radar perception for autonomous vehicles problem through incorporation of the radar imaging physics to drive the design of innovative machine learning algorithms. Intelligent signal processing and machine learning techniques will be developed at multiple layers, including 1) learning-based adaptive radar transmit parameter adjustment, 2) iterative optimization algorithms to enhance the dynamic range of automotive radar sensing by exploiting constructive interference, 3) model-based learning framework for collaborative high-resolution radar imaging in an automotive radar network, 4) physics-aware radar machine learning algorithms for robust environment perception. These new techniques will demonstrate how the science insights advance high resolution radar imaging, and robustly detect and classify objects in the highly dynamic autonomous driving environment.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
汽车雷达成像代表了汽车主动安全和自动驾驶感知的迫切技术需求。工作在毫米波频率(通常约为77 GHz)的汽车雷达是必不可少的,因为它在测量范围、速度方面具有上级能力,在所有天气条件下都能在遮挡情况下提供更好的感知性能,而且成本比激光雷达低得多。最先进的汽车雷达容易出现相互干扰和多径问题,其有限的角分辨率(约13度)不足以促进完全自动驾驶的感知任务。该CAREER项目旨在通过探索自适应、协作传感和雷达成像物理原理,创新汽车雷达感知,为社会中的个人福祉服务,并减少美国高速公路上的致命事故。它加深了我们的理解,这样的传感器可以提高动态范围,并解决不适定的性质的雷达成像逆问题。应对汽车雷达成像的挑战需要学术界和工业界之间的合作。通过与汽车行业的合作,该项目将使研究更具影响力和针对性,加快研究成果向汽车行业应用的过渡。自动驾驶汽车研究有助于吸引代表性不足的研究人员。通过K-12外展活动和招募工程领域代表性不足的群体和女性,该项目将促进STEM研究的多样性,激励他们在雷达领域进行高级研究。这个CAREER项目通过研究基于学习的自适应和协作方法来解决汽车雷达成像中固有的不适定逆问题。该项目通过结合雷达成像物理学来解决自动驾驶汽车的强大雷达感知问题,以推动创新机器学习算法的设计。智能信号处理和机器学习技术将在多个层面上开发,包括1)基于学习的自适应雷达发射参数调整,2)迭代优化算法,通过利用相长干涉来增强汽车雷达感测的动态范围,3)基于模型的学习框架,用于汽车雷达网络中的协作高分辨率雷达成像,4)用于鲁棒环境感知的物理感知雷达机器学习算法。这些新技术将展示科学见解如何推进高分辨率雷达成像,并在高度动态的自动驾驶环境中稳健地检测和分类物体。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shunqiao Sun其他文献

Redefining Automotive Radar Imaging: A Domain-Informed 1D Deep Learning Approach for High-Resolution and Efficient Performance
重新定义汽车雷达成像:一种基于领域的一维深度学习方法,可实现高分辨率和高效性能
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ru;Shunqiao Sun;Holger Caesar;Honglei Chen;Jian Li
  • 通讯作者:
    Jian Li
Interpretable and Efficient Beamforming-Based Deep Learning for Single Snapshot DOA Estimation
用于单快照 DOA 估计的可解释且高效的基于波束成形的深度学习
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Ru;Shunqiao Sun;Hongshan Liu;Honglei Chen;Jian Li
  • 通讯作者:
    Jian Li
Ieee Transactions on Aerospace and Electronic Systems 1 Mimo-mc Radar: a Mimo Radar Approach Based on Matrix Completion
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shunqiao Sun
  • 通讯作者:
    Shunqiao Sun
Investigation of microwave transducers for linearity dependence and applications in quantum networking
微波换能器线性依赖性的研究及其在量子网络中的应用
  • DOI:
    10.1117/12.2633522
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Summer Bolton;Joseph T. Lukens;Carson E. Moseley;Maddy Woodson;S. Estrella;Shunqiao Sun;S. Kim;P. Kung
  • 通讯作者:
    P. Kung
Interference Mitigation in Automotive Radars
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shunqiao Sun
  • 通讯作者:
    Shunqiao Sun

Shunqiao Sun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shunqiao Sun', 18)}}的其他基金

CRII: CIF: A Sparse Framework Based Automotive Radar Sensing for Autonomous Vehicles
CRII:CIF:基于稀疏框架的自动驾驶汽车雷达传感
  • 批准号:
    2153386
  • 财政年份:
    2022
  • 资助金额:
    $ 50.68万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Adaptive Deep Learning Systems Towards Edge Intelligence
职业:迈向边缘智能的自适应深度学习系统
  • 批准号:
    2338512
  • 财政年份:
    2024
  • 资助金额:
    $ 50.68万
  • 项目类别:
    Continuing Grant
CAREER: Towards highly efficient UV emitters with lattice engineered substrates
事业:采用晶格工程基板实现高效紫外线发射器
  • 批准号:
    2338683
  • 财政年份:
    2024
  • 资助金额:
    $ 50.68万
  • 项目类别:
    Continuing Grant
Postdoctoral Fellowship: STEMEdIPRF: Towards a Diverse Professoriate: Experiences that Inform Underrepresented Scholars' Perceptions of Value Alignment and Career Decisions
博士后奖学金:STEMEdIPRF:走向多元化的教授职称:为代表性不足的学者对价值调整和职业决策的看法提供信息的经验
  • 批准号:
    2327411
  • 财政年份:
    2024
  • 资助金额:
    $ 50.68万
  • 项目类别:
    Standard Grant
Collaborative Research: Maritime to Inland Transitions Towards ENvironments for Convection Initiation (MITTEN CI)
合作研究:海洋到内陆向对流引发环境的转变(MITTEN CI)
  • 批准号:
    2349935
  • 财政年份:
    2024
  • 资助金额:
    $ 50.68万
  • 项目类别:
    Continuing Grant
Collaborative Research: Maritime to Inland Transitions Towards ENvironments for Convection Initiation (MITTEN CI)
合作研究:海洋到内陆向对流引发环境的转变(MITTEN CI)
  • 批准号:
    2349934
  • 财政年份:
    2024
  • 资助金额:
    $ 50.68万
  • 项目类别:
    Continuing Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
  • 批准号:
    2400195
  • 财政年份:
    2024
  • 资助金额:
    $ 50.68万
  • 项目类别:
    Standard Grant
ASCENT: Heterogeneously Integrated and AI-Empowered Millimeter-Wave Wide-Bandgap Transmitter Array towards Energy- and Spectrum-Efficient Next-G Communications
ASCENT:异构集成和人工智能支持的毫米波宽带隙发射机阵列,实现节能和频谱高效的下一代通信
  • 批准号:
    2328281
  • 财政年份:
    2024
  • 资助金额:
    $ 50.68万
  • 项目类别:
    Standard Grant
CAREER: Towards a comprehensive model of seismicity throughout the seismic cycle
职业:建立整个地震周期地震活动的综合模型
  • 批准号:
    2339556
  • 财政年份:
    2024
  • 资助金额:
    $ 50.68万
  • 项目类别:
    Continuing Grant
CAREER: Towards Safety-Critical Real-Time Systems with Learning Components
职业:迈向具有学习组件的安全关键实时系统
  • 批准号:
    2340171
  • 财政年份:
    2024
  • 资助金额:
    $ 50.68万
  • 项目类别:
    Continuing Grant
Sexual offence interviewing: Towards victim-survivor well-being and justice
性犯罪面谈:为了受害者-幸存者的福祉和正义
  • 批准号:
    DE240100109
  • 财政年份:
    2024
  • 资助金额:
    $ 50.68万
  • 项目类别:
    Discovery Early Career Researcher Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了