ENVIA - Simulation environment for AI-driven vehicles

ENVIA - 人工智能驱动车辆的仿真环境

基本信息

  • 批准号:
    576498-2022
  • 负责人:
  • 金额:
    $ 8.88万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Alliance Grants
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

How do we learn the concepts of safety and how do we apply them to control algorithms for AI-driven vehicles? While deep reinforcement learning is a very common approach for modern artificial intelligence in terms of autonomous control (of robots, aircraft, factories, etc.), it carries by nature a fundamental safety risk that prevents its deployment in the context of many real industrial systems. Several researchers are trying to validate the safety of AI-driven systems. In this project, we use a different approach: we use classical control approaches to constrain AI-based systems and prevent actions that are not safe. We combine control theory and reinforcement learning to produce efficient and safe control algorithms, which can be initially trained in simulation, and then adapted and refined by meeting safety guarantees on the targeted real hardware. The principle is to use "barriers" to set strict safety limits for controllers trained by reinforcement learning (e.g., the controller of a drone). These barriers can themselves be learned automatically, and loosened or tightened as needed, trading off some level of risk to improve learning or performance. Imagine a person learning to ski with an instructor: they will take the risk of falling to learn, but this risk is limited and constrained by the instructor's knowledge and guidance. In a similar way, our barriers will prevent excessively risky actions taken by the AI. Our final goal is to design controllers that can be trained in simulation and then deployed on real hardware for adaptation and additional learning with tunable, calculated risk based on performance requirements. The economic and technical benefits for the industrial partners will be significant in the medium term, as the project will allow the application of deep reinforcement learning methods, which currently exceed the performance of all other known methods as well as that of human experts in more and more virtual environments where errors have no serious consequences, to real systems where safety is critical. Personnel working on the project will be highly sought after, and Canada will benefit in terms of scientific and industrialprestige, as well as by the economic impact of the new highly qualified personnel.
我们如何学习安全的概念,以及如何将它们应用于人工智能驾驶车辆的控制算法?虽然深度强化学习是现代人工智能在自主控制(机器人,飞机,工厂等)方面非常常见的方法,其本质上带有基本的安全风险,这阻止了其在许多真实的工业系统的环境中的部署。一些研究人员正试图验证人工智能驱动系统的安全性。在这个项目中,我们使用了一种不同的方法:我们使用经典的控制方法来约束基于AI的系统,并防止不安全的行为。我们将联合收割机控制理论和强化学习相结合,以产生高效安全的控制算法,这些算法可以在模拟中进行初始训练,然后通过满足目标真实的硬件上的安全保证进行调整和改进。其原理是使用“障碍”为经过强化学习训练的控制器设置严格的安全限制(例如,无人机的控制器)。这些障碍本身可以自动学习,并根据需要放松或收紧,以某种程度的风险来改善学习或表现。想象一下,一个人在教练的指导下学习滑雪:他们会冒着摔倒的风险去学习,但这种风险是有限的,并受到教练知识和指导的约束。以类似的方式,我们的屏障将防止人工智能采取过度冒险的行动。我们的最终目标是设计可以在仿真中训练的控制器,然后部署在真实的硬件上进行适应和额外的学习,并根据性能要求计算可调的风险。从中期来看,工业合作伙伴的经济和技术利益将是显著的,因为该项目将允许将深度强化学习方法应用于安全性至关重要的真实的系统,该方法目前超过了所有其他已知方法的性能,以及越来越多的虚拟环境中的人类专家的性能。从事该项目的人员将受到高度追捧,加拿大将在科学和工业声望方面受益,并将因新的高素质人员的经济影响而受益。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Beltrame, GiovanniGM其他文献

Beltrame, GiovanniGM的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

A next-generation extendable simulation environment for affordable, accurate, and efficient free energy simulations
下一代可扩展模拟环境,可实现经济、准确且高效的自由能源模拟
  • 批准号:
    10638121
  • 财政年份:
    2023
  • 资助金额:
    $ 8.88万
  • 项目类别:
Simulation Academy at Yale: Youth Entering Science (SAY-YES!)
耶鲁大学模拟学院:青年进入科学(说是!)
  • 批准号:
    10663646
  • 财政年份:
    2023
  • 资助金额:
    $ 8.88万
  • 项目类别:
Supplement for Cloud Computing: Alcohol Use Disorder Treatment Simulation
云计算补充:酒精使用障碍治疗模拟
  • 批准号:
    10827563
  • 财政年份:
    2023
  • 资助金额:
    $ 8.88万
  • 项目类别:
ACTS (AD Clinical Trial Simulation): Developing Advanced Informatics Approaches for an Alzheimer's Disease Clinical Trial Simulation System
ACTS(AD 临床试验模拟):为阿尔茨海默病临床试验模拟系统开发先进的信息学方法
  • 批准号:
    10753675
  • 财政年份:
    2023
  • 资助金额:
    $ 8.88万
  • 项目类别:
Collaborative Research: GEO OSE Track 1: Advanced cloud-based Data- and Visualization-Integrated Simulation EnviRonment (ADVISER) to Advance Computational Glaciology
合作研究:GEO OSE Track 1:先进的基于云的数据和可视化集成模拟环境 (ADVISER),以推进计算冰川学
  • 批准号:
    2324737
  • 财政年份:
    2023
  • 资助金额:
    $ 8.88万
  • 项目类别:
    Standard Grant
SCH: Simulation Optimization of Cardiac Surgical Planning
SCH:心脏手术计划的模拟优化
  • 批准号:
    10816654
  • 财政年份:
    2023
  • 资助金额:
    $ 8.88万
  • 项目类别:
Digital Innovation, Simulation, and Collaboration using Virtual Environment Realities (DISCOVER) for Pediatric Diagnostic
使用虚拟环境现实 (DISCOVER) 进行儿科诊断的数字创新、模拟和协作
  • 批准号:
    10769298
  • 财政年份:
    2023
  • 资助金额:
    $ 8.88万
  • 项目类别:
Enhancing robotic head and neck surgical skills using stimulated simulation
使用刺激模拟增强机器人头颈手术技能
  • 批准号:
    10586874
  • 财政年份:
    2023
  • 资助金额:
    $ 8.88万
  • 项目类别:
Collaborative Research: GEO OSE Track 1: Advanced cloud-based Data- and Visualization-Integrated Simulation EnviRonment (ADVISER) to Advance Computational Glaciology
合作研究:GEO OSE Track 1:先进的基于云的数据和可视化集成模拟环境 (ADVISER),以推进计算冰川学
  • 批准号:
    2324735
  • 财政年份:
    2023
  • 资助金额:
    $ 8.88万
  • 项目类别:
    Standard Grant
Study on the formation environment and thermal history of long period comets using numerical simulation and observation data obtained by spacecraft
利用数值模拟和航天器观测数据研究长周期彗星的形成环境和热历史
  • 批准号:
    22KJ0989
  • 财政年份:
    2023
  • 资助金额:
    $ 8.88万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了