Monitoring and Debugging of High Performance Distributed Heterogeneous Cloud Applications

高性能分布式异构云应用的监控和调试

基本信息

  • 批准号:
    554158-2020
  • 负责人:
  • 金额:
    $ 24.98万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Alliance Grants
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

The communication and computing infrastructure is getting ever more sophisticated at an extremely rapid pace. Recent applications include 5G connected mobile devices, autonomous cars, smart robots and intelligent digital assistants powered by Machine Learning. These advances are made possible by a number of technological developments at the hardware and software levels, such as computer central processing units with tens of cores, coprocessors for graphics and intensive computations (GPGPU) with thousands of cores and over 18 billion logic elements, 5G low latency high speed networking, and Cloud based infrastructures that execute their requests in parallel.As a result, even a simple operation such as initiating a phone call, making a Web search, routing a packet or displaying a video frame, can involve many parallel cores on more than one processing unit, possibly on several servers. Moreover, the same operation, a few seconds later, may be served in a different way by different cores and physical servers in the Cloud. Therefore, understanding the performance of these operations has become extremely difficult and the tools for that purpose are severely lacking. In this project, the tracing, profiling, debugging and monitoring tools for High Performance Distributed Systems will be extended to efficiently extract information from all units in all layers, from the hardware to the applications, and cope with the large number of cores and computers. The project has a specific focus on Cloud applications connecting to mobile and Internet of Things devices through Edge servers and 5G networks, High Performance Computing exploiting the new generation of shared memory GPGPUs, Machine Learning applications, and a new modular architecture for more integrated software development tools. As a result, the designers and operators of High Performance Distributed Systems will have the tools in hand to quickly analyse their system performance, automatically or manually find problems, and optimise operations.
通信和计算基础设施正以极快的速度变得越来越复杂。最近的应用包括5G连接的移动的设备、自动汽车、智能机器人和由机器学习驱动的智能数字助理。这些进步是通过硬件和软件层面的许多技术发展实现的,例如具有数十个核心的计算机中央处理器,具有数千个核心和超过180亿个逻辑元件的图形和密集计算协处理器(GPGPU),5G低延迟高速网络以及并行执行其请求的基于云的基础设施。因此,即使是诸如发起电话呼叫、进行Web搜索、路由分组或显示视频帧的简单操作,也可能涉及在多于一个处理单元上(可能在若干服务器上)的许多并行核。此外,几秒钟后,相同的操作可能会由云中的不同核心和物理服务器以不同的方式提供服务。因此,了解这些行动的业绩变得极为困难,而且严重缺乏这方面的工具。在这个项目中,高性能分布式系统的跟踪,分析,调试和监控工具将被扩展,以有效地提取从硬件到应用程序的所有层中的所有单元的信息,并科普大量的核心和计算机。该项目特别关注通过边缘服务器和5G网络连接到移动的和物联网设备的云应用程序、利用新一代共享内存GPGPU的高性能计算、机器学习应用程序以及用于更集成软件开发工具的新模块化架构。因此,高性能分布式系统的设计者和操作者将拥有快速分析系统性能的工具,自动或手动发现问题,并优化操作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dagenais, MichelMR其他文献

Dagenais, MichelMR的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Collaborative Research: SHF: Medium: Causal Performance Debugging for Highly-Configurable Systems
合作研究:SHF:中:高度可配置系统的因果性能调试
  • 批准号:
    2107405
  • 财政年份:
    2021
  • 资助金额:
    $ 24.98万
  • 项目类别:
    Standard Grant
Monitoring and Debugging of High Performance Distributed Heterogeneous Cloud Applications
高性能分布式异构云应用的监控和调试
  • 批准号:
    554158-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 24.98万
  • 项目类别:
    Alliance Grants
Collaborative Research: SHF: Medium: Causal Performance Debugging for Highly-Configurable Systems
合作研究:SHF:中:高度可配置系统的因果性能调试
  • 批准号:
    2107463
  • 财政年份:
    2021
  • 资助金额:
    $ 24.98万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Core: Medium: Causal Performance Debugging for Highly-Configurable Systems
协作研究:SHF:核心:中:高度可配置系统的因果性能调试
  • 批准号:
    2106853
  • 财政年份:
    2021
  • 资助金额:
    $ 24.98万
  • 项目类别:
    Standard Grant
Monitoring and Debugging of High Performance Distributed Heterogeneous Cloud Applications
高性能分布式异构云应用的监控和调试
  • 批准号:
    554158-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 24.98万
  • 项目类别:
    Alliance Grants
Theory and Methodology for Performance-Driven Automation in RTL and Testbench Debugging
RTL 和测试台调试中性能驱动自动化的理论和方法
  • 批准号:
    RGPIN-2014-04275
  • 财政年份:
    2018
  • 资助金额:
    $ 24.98万
  • 项目类别:
    Discovery Grants Program - Individual
Theory and Methodology for Performance-Driven Automation in RTL and Testbench Debugging
RTL 和测试台调试中性能驱动自动化的理论和方法
  • 批准号:
    RGPIN-2014-04275
  • 财政年份:
    2017
  • 资助金额:
    $ 24.98万
  • 项目类别:
    Discovery Grants Program - Individual
Theory and Methodology for Performance-Driven Automation in RTL and Testbench Debugging
RTL 和测试台调试中性能驱动自动化的理论和方法
  • 批准号:
    RGPIN-2014-04275
  • 财政年份:
    2016
  • 资助金额:
    $ 24.98万
  • 项目类别:
    Discovery Grants Program - Individual
Theory and Methodology for Performance-Driven Automation in RTL and Testbench Debugging
RTL 和测试台调试中性能驱动自动化的理论和方法
  • 批准号:
    RGPIN-2014-04275
  • 财政年份:
    2015
  • 资助金额:
    $ 24.98万
  • 项目类别:
    Discovery Grants Program - Individual
SHF: Medium: Collaborative Research: Improved Performance Testing and Debugging
SHF:中:协作研究:改进的性能测试和调试
  • 批准号:
    1409423
  • 财政年份:
    2014
  • 资助金额:
    $ 24.98万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了