Towards understanding the interactions between the trustworthiness properties of machine learning

理解机器学习的可信度属性之间的相互作用

基本信息

  • 批准号:
    RGPIN-2022-04006
  • 负责人:
  • 金额:
    $ 1.82万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

As machine learning models become ubiquitous in our daily lives, concerns about associated ethical issues are becoming increasingly important. As a result, we are witnessing the emergence of many public and private initiatives, calling for an ethically aligned development of artificial intelligence. Machine learning models are expected to exhibit several trustworthiness properties such as being fair, robust against privacy attacks (i.e., membership inference, property inference, model extraction) and security vulnerabilities (i.e., adversarial examples, data poisoning, sponge examples), able to explain their decisions, or to guarantee the right to be forgotten. However, the way in which these properties interact with each other remains very poorly characterized. This represents a substantial practical challenge to the development of trustworthy machine learning models. The long-term vision of my research is to create a framework to study the tensions and convergences between the trustworthiness properties of machine learning and use the insights gained from this study to develop machine learning models that can simultaneously exhibit several trustworthiness properties. More precisely, my research program will explore three important contexts where such tensions and convergences can be observed. The first context concerns post-hoc explainability. In this setting, I propose studying the security and privacy vulnerabilities of post-hoc explanation techniques and developing trustworthy explanation methods that are immune to them. The second context concerns the design of algorithms to learn simultaneously fair and privacy-preserving models. In this setting, I propose new training techniques for fair decision-making under data minimization and differential privacy constraints. Finally, the third context concerns machine unlearning. In this setting, my research will focus on studying the trade-offs between data privacy and the right to be forgotten in machine unlearning and the design of robust data deletion algorithms. The outcomes of this research program are important for the academic community, industry practitioners, and society, as they will contribute to an ethically aligned development of artificial intelligence systems. They are significant for the trustworthy machine learning field and, more generally, for science and engineering. The core benefits of this research program are twofold: (1) insights into the tensions and convergences between trustworthiness properties of machine learning and (2) a framework to develop scalable and trustworthy machine learning models. Furthermore, the highly qualified personnel trained through this research program will help Canadian companies develop expertise in trustworthy machine learning.
随着机器学习模型在我们的日常生活中变得无处不在,对相关伦理问题的关注变得越来越重要。因此,我们目睹了许多公共和私人倡议的出现,呼吁人工智能的道德发展。机器学习模型被期望表现出若干可信度属性,诸如公平、对隐私攻击的鲁棒性(即,成员推断、属性推断、模型提取)和安全漏洞(即,对抗性的例子,数据中毒,海绵例子),能够解释他们的决定,或保证被遗忘的权利。然而,这些性质相互作用的方式仍然很差。这对开发值得信赖的机器学习模型来说是一个重大的实际挑战。我的研究的长期愿景是创建一个框架来研究机器学习的可信度属性之间的紧张关系和收敛性,并使用从这项研究中获得的见解来开发可以同时表现出多个可信度属性的机器学习模型。更确切地说,我的研究计划将探讨三个重要的背景下,这种紧张局势和收敛可以观察到。第一个方面涉及事后的可解释性。在这种情况下,我建议研究安全和隐私的事后解释技术的漏洞,并开发值得信赖的解释方法,是免疫的。第二个背景涉及同时学习公平和隐私保护模型的算法设计。在这种情况下,我提出了新的训练技术,数据最小化和差异隐私约束下的公平决策。最后,第三个方面涉及机器学习。在这种情况下,我的研究将集中在研究数据隐私和机器学习中被遗忘的权利之间的权衡以及强大的数据删除算法的设计。这项研究计划的成果对学术界、行业从业者和社会都很重要,因为它们将有助于人工智能系统的道德发展。它们对于值得信赖的机器学习领域以及更广泛的科学和工程领域都具有重要意义。该研究项目的核心优势有两个方面:(1)深入了解机器学习的可信度属性之间的紧张关系和收敛性;(2)开发可扩展和可信赖的机器学习模型的框架。此外,通过该研究计划培训的高素质人员将帮助加拿大公司发展值得信赖的机器学习专业知识。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aïvodji, Ulrich其他文献

Aïvodji, Ulrich的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aïvodji, Ulrich', 18)}}的其他基金

Towards understanding the interactions between the trustworthiness properties of machine learning
理解机器学习的可信度属性之间的相互作用
  • 批准号:
    DGECR-2022-00387
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Launch Supplement

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Towards a Quantum-Mechanical Understanding of Redox Chemistry in Proteins
对蛋白质氧化还原化学的量子力学理解
  • 批准号:
    10606459
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
Deciphering the complex pharmacology of CB1: towards the understanding of a third signaling pathway
解读 CB1 的复杂药理学:了解第三条信号通路
  • 批准号:
    10667865
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
Modeling myosin mechanobiology towards understanding the mechanisms of hypertrophic cardiomyopathy
模拟肌球蛋白力学生物学以了解肥厚型心肌病的机制
  • 批准号:
    10906499
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
Modeling myosin mechanobiology towards understanding the mechanisms of hypertrophic cardiomyopathy
模拟肌球蛋白力学生物学以了解肥厚型心肌病的机制
  • 批准号:
    10747039
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
Towards understanding the interactions between the trustworthiness properties of machine learning
理解机器学习的可信度属性之间的相互作用
  • 批准号:
    DGECR-2022-00387
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Launch Supplement
SemiSynBio-III: Towards Understanding and Controlling Redox for Microbial Memory and INteractions - TURIN
SemiSynBio-III:了解和控制微生物记忆和相互作用的氧化还原 - TURIN
  • 批准号:
    2227598
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
Towards a mechanistic understanding of the role of gut microbiota in postnatal growth impairment
从机制上理解肠道微生物群在产后生长障碍中的作用
  • 批准号:
    10655393
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
Towards a mechanistic understanding of the role of gut microbiota in postnatal growth impairment
从机制上理解肠道微生物群在产后生长障碍中的作用
  • 批准号:
    10765586
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
Genetics of human circadian rhythms: using sequencing, novel phenotyping methods, and functional assays to move towards a deeper understanding of circadian mechanisms
人类昼夜节律的遗传学:利用测序、新颖的表型分析方法和功能分析来更深入地了解昼夜节律机制
  • 批准号:
    10707160
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
Genetics of human circadian rhythms: using sequencing, novel phenotyping methods, and functional assays to move towards a deeper understanding of circadian mechanisms
人类昼夜节律的遗传学:利用测序、新颖的表型分析方法和功能分析来更深入地了解昼夜节律机制
  • 批准号:
    10814457
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了