SemiSynBio-III: Towards Understanding and Controlling Redox for Microbial Memory and INteractions - TURIN

SemiSynBio-III:了解和控制微生物记忆和相互作用的氧化还原 - TURIN

基本信息

  • 批准号:
    2227598
  • 负责人:
  • 金额:
    $ 150万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-15 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

Modern electronics transformed our lives by allowing information to be communicated through electromagnetic radiation and processed through integrated circuits. Such electronic devices can transmit, receive and process digital information rapidly, cheaply and without error. Biology is also expert at information processing, typically communicating through various modalities (e.g., electrical, mechanical and molecular), and processing through cell-based “micro-processors” that are often embedded within multicellular systems (i.e., tissue or consortia). Such biological systems can process noisy information to learn, adapt and store information for use by future generations. The long-term vision of this research is the fusion of orthogonal information processing capabilities in electronics and biology. This is denoted “bioelectronic communication” and the team is developing a new way of facilitating this transformative capability. Their approach exploits electron flow and it bridges the gap that exists at the bio-device interface - electrons flow freely in microelectronics but are transferred in networked oxidation and reduction (i.e., redox) reactions in biology. By developing redox-linked synthetic biology that enables electron transfer to and from “smart” materials that, in turn, are electroactive components microelectronic devices, the team has already built the basis for opening new lines of bioelectronic communication. A unique feature of their work will be the use of electronics to stimulate gene expression as well as to “write” retrievable “coded” information onto the genome of microbes. There are many opportunities envisioned for these capabilities. For example, with “biohybrid” devices built to enable these capabilities, one may be able to eavesdrop on and control our immune systems as they combat infections and guide wound healing. These processes rely on redox communication. One may be able to explore the molecular communication in the GI tract or in the rhizosphere, where redox based signaling is also prevalent. Unraveling the complexities of these systems will help address the challenges of human health, environmental security, as well as food production and crop protection. The TURIN multidisciplinary team is well-poised to not only develop the fundamental basis for bioelectronic communication, but to catalyze its transformation into practice through an extensive network of collaborations with industry and governmental agencies (i.e., NIST, FDA). Importantly, efforts will include the training of undergraduate and graduate students at the intersection of engineering, computer science and biology, and the development of a new summer school on redox-based bioelectronics. The projects’s long-term vision is the fusion of orthogonal information processing capabilities of electronics and biology for the development of an emerging field of redox-based bioelectronics. The overarching hypothesis of this research is that the redox modality provides an unprecedented ability to interface biology and electronics because: (i) electrochemistry provides electronic access to this modality (i.e., redox signals can be readily generated and detected at an electrode); and (ii) redox is a native biological modality by which cells exchange information with their environment. The project offers several important intellectual contributions across four Technological Focus (TF) areas. The first TF will fabricate biocompatible materials (i.e., thin hydrogel films) as an electronic layer that interconverts redox and electrical signals. These will transduce electrode-imposed inputs into biologically-recognized redox signals (e.g., H2O2, phenazines). The second TF will create communicating cells capable of interconverting signals from the redox modality and a native biological signaling modality (quorum sensing autoinducers) to enable communication to a broader microbial population. The third TF will create decision-making cells that can be instructed by electric inputs to observe their context and perform context-dependent Boolean logic operations: either to write to their genome (permanent memory) or to adjust consortium populations (we hypothesize that population setpoints are a poorly-understood form of dynamic memory). The fourth TF will integrate research activities using systems-level modeling to establish metrics for the efficient flow of energy and information through an electroassembled bio-electronic network. By physically and computationally linking the components of these TF areas, biohybrid devices are envisioned that open lines of communication between the biotic and abiotic worlds. Further, the PIs will initiate a new summer school on redox-based bioelectronics and systems and synthetic biology-based design, especially targeting local undergraduate and graduate students, including those from other minority serving institutions. Summer schools will rotate among the three institutions and leverage the respective PIs' expertise and institutional strengths at Maryland (Center for Minorities in Science and Engineering), GT, and Wisconsin (WID Illuminating Discovery Hub) to ensure diverse participation and quantified outcomes.This project has been jointly funded by Division of Molecular and Cellular Biosciences (MCB) in the Directorate for Biological Sciences (BIO), Division of Computing and Communication Foundations (CCF) in the Directorate for Computer and Information Science and Engineering (CISE), Division of Electrical, Communications and Cyber Systems (ECCS) in the Directorate for Engineering (ENG), and the Division of Materials Research (DMR) in the Directorate for Mathematical and Physical Sciences (MPS).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代电子设备通过允许通过电子辐射传达信息并通过集成电路处理来改变我们的生活。这样的电子设备可以快速,便宜且无错误地传输,接收和处理数字信息。生物学也是信息处理方面的专家,通常通过各种方式(例如电气,机械和分子)进行通信,并通过基于细胞的“微处理器”处理,它们通常嵌入多细胞系统(即组织或构造)中。这样的生物系统可以处理噪声信息,以学习,适应和存储以后的信息。这项研究的长期视野是电子和生物学中正交信息处理能力的融合。这是“生物电子沟通”,并且团队正在开发一种促进这种变革能力的新方法。他们的方法利用了电子流,并弥合了在生物设备界面上存在的间隙 - 电子设备在微电子中自由流动,但在网络氧化和还原(即氧化还原)中转移了生物学中的反应。通过开发与氧化还原链接的合成生物学,该生物学能够向“智能”材料进行电子传输,而“智能”材料反过来是电活性组件微电子设备,该团队已经为开放新的生物电子通信线开辟了基础。他们工作的一个独特特征将是使用电子产品刺激基因表达以及“编写”可检索的“编码”信息到微生物的基因组上。这些功能有很多机会。例如,借助构建这些功能的“生物杂化”设备,人们可能能够在打击感染并引导伤口愈合时窃听并控制我们的免疫系统。这些过程依赖于氧化还原通信。一个人可能能够探索胃肠道或根际中基于氧化还原的信号传导的分子通信。阐明这些系统的复杂性将有助于应对人类健康,环境安全以及粮食生产和作物保护的挑战。都灵多学科团队对不仅为生物电子交流的基本依据开发了良好的基础,而且还通过与行业和政府机构的广泛合作网络(即NIST,FDA)促进其转型为实践。重要的是,努力将包括在工程学,计算机科学与生物学的交汇处的本科生和研究生的培训,以及在基于氧化还原的生物电子学上开发一所新的暑期学校。项目的长期愿景是电子和生物学的正交信息处理能力融合,以开发基于氧化还原的生物电子学的新兴领域。这项研究的总体假设是,氧化还原模式为接口生物学和电子设备提供了前所未有的能力,因为:(i)电子化学提供了对这种模式的电子访问(即,可以很容易地生成并在电极上检测到氧化还原信号); (ii)氧化还原是一种天然生物学方式,细胞通过其环境将信息交换。该项目在四个技术重点(TF)领域提供了几项重要的智力贡献。第一个TF将制造生物相容性材料(即薄水凝胶膜)作为互连氧化还原和电信号的电子层。这些将将电子输入转化为生物认可的氧化还原信号(例如H2O2,苯吡啶)。第二个TF将创建能够从氧化还原模式互换信号和天然生物学信号传导方式(Quorum Sensing AutoDivedsR)的通信单元,以使其能够与更广泛的微生物种群进行通信。第三个TF将创建决策单元,可以通过电力输入来指导以观察其上下文并执行与上下文有关的布尔逻辑操作:要么写入其基因组(永久记忆)或调整财团种群(我们假设种群设置点是一种动力学记忆形式不佳)。第四TF将使用系统级建模整合研究活动,以通过电子组装的生物电子网络来建立有效的能量和信息流量的指标。通过将这些TF区域的组成部分的物理和计算联系起来,可以设想生物杂化设备在生物和非生物世界之间的开放通信线路。此外,PI将在基于氧化还原的生物电子学和系统以及基于合成生物学的设计上启动一所新的暑期学校,尤其是针对当地本科生和研究生,包括其他少数少数派服务机构的研究生。暑期学校将在三个机构之间轮流,并利用各自的PIS在马里兰州(科学与工程学的少数群体中心),GT和威斯康星州和威斯康星州(Wide Plinuminating Discovery Hub)的参与和量化成果的量化。计算机和信息科学与工程局(CISE),电气,通信和网络系统(ECC)的计算和沟通基础(CCF)(CISE)在工程局(ENG)(ENG)(ENG)和材料研究局(DMR)(DMR)(DMR)(DMR)在数学和物理科学(MPS)中的支持(MPS)。和更广泛的影响审查标准。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
High performance anion exchange chromatography purification of probiotic bacterial extracellular vesicles enhances purity and anti-inflammatory efficacy
  • DOI:
    10.1002/bit.28522
  • 发表时间:
    2023-08-09
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Pirolli,Nicholas H.;Reus,Laura Samantha C.;Jay,Steven M.
  • 通讯作者:
    Jay,Steven M.
Electro-Biofabrication. Coupling Electrochemical and Biomolecular Methods to Create Functional Bio-Based Hydrogels
  • DOI:
    10.1021/acs.biomac.3c00132
  • 发表时间:
    2023-05-08
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Liu,Yi;Kim,Eunkyoung;Payne,Gregory F.
  • 通讯作者:
    Payne,Gregory F.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Bentley其他文献

What Is Lean Six Sigma
什么是精益六西格码
  • DOI:
    10.1201/9781439803820.ch4
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    William Bentley;Peter Davis
  • 通讯作者:
    Peter Davis
Electrochemical classification and quantification of biologics using cyclic voltammetry and machine learning
  • DOI:
    10.1016/j.bpj.2022.11.1644
  • 发表时间:
    2023-02-10
  • 期刊:
  • 影响因子:
  • 作者:
    Kayla Chun;William Bentley
  • 通讯作者:
    William Bentley

William Bentley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Bentley', 18)}}的其他基金

IUCRC Phase II+ University of Maryland: Center for Advanced Mammalian Biomanufacturing Innovation (AMBIC)
IUCRC 第二阶段 马里兰大学:先进哺乳动物生物制造创新中心 (AMBIC)
  • 批准号:
    2100632
  • 财政年份:
    2021
  • 资助金额:
    $ 150万
  • 项目类别:
    Continuing Grant
Designing Materials to Revolutionize and Engineer our Future (DMREF)
设计材料以彻底改变和设计我们的未来 (DMREF)
  • 批准号:
    2007952
  • 财政年份:
    2020
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
Phase I IUCRC at Maryland: Advanced Mammalian Biomanufacturing Innovation Center (AMBIC)
马里兰州 IUCCRC 第一阶段:先进哺乳动物生物制造创新中心 (AMBIC)
  • 批准号:
    1841506
  • 财政年份:
    2018
  • 资助金额:
    $ 150万
  • 项目类别:
    Continuing Grant
Bio-Based "Molectronic" Devices for Bidirectional Molecular-to-Electronic Signal Transduction
用于双向分子到电子信号转导的生物基“分子”器件
  • 批准号:
    1805274
  • 财政年份:
    2018
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
SemiSynBio: Redox-enabled Bio-Electronics for Molecular Communication and Memory (RE-BIONICS)
SemiSynBio:用于分子通信和记忆的氧化还原生物电子学(RE-BIONICS)
  • 批准号:
    1807604
  • 财政年份:
    2018
  • 资助金额:
    $ 150万
  • 项目类别:
    Continuing Grant
Designing Materials to Revolutionize and Engineer our Future March 26th & 27th 2018 Meeting
设计材料以彻底改变和设计我们的未来 3 月 26 日
  • 批准号:
    1826506
  • 财政年份:
    2018
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
Workshop: International collaboration to advance biomanufacturing; September 7-8, 2017; Brussels, Belgium
研讨会:国际合作推进生物制造;
  • 批准号:
    1749786
  • 财政年份:
    2017
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
An integrated approach, using biofabrication and chemical synthesis, to study cell signaling
使用生物制造和化学合成研究细胞信号传导的综合方法
  • 批准号:
    1264509
  • 财政年份:
    2013
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
A Switch for Synthetic Biology Based on Feature Density
基于特征密度的合成生物学开关
  • 批准号:
    1160005
  • 财政年份:
    2012
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
EFRI-CBE Topic B: Biofunctionalized Devices - On Chip Signaling and "Rewiring" Bacterial Cell-Cell Communication
EFRI-CBE 主题 B:生物功能化器件 - 片上信号传导和“重新布线”细菌细胞间通信
  • 批准号:
    1042881
  • 财政年份:
    2010
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant

相似国自然基金

人工湿地铁循环驱动As(III)氧化的过程调控及其强化除砷机制
  • 批准号:
    52370204
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
III-E型CRISPR-Cas系统的结构生物学及其应用研究
  • 批准号:
    32371276
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
乙肝肝纤维化进程咪唑丙酸通过mTORC1通路调控III型固有淋巴细胞糖脂代谢重编程及机制研究
  • 批准号:
    82370622
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
生物炭表面结构属性对Fe(II)氧化诱导As(III)氧化截污的影响机制
  • 批准号:
    42307492
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
铁载体与Fe(III)相互作用过程的铁同位素分馏及机理的模拟实验研究
  • 批准号:
    42377264
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

ワンチップ型赤外線分析システムに向けたIII-IV-V族系発光素子材料の開拓
用于单片红外分析系统的III-IV-V族发光器件材料的开发
  • 批准号:
    24K00923
  • 财政年份:
    2024
  • 资助金额:
    $ 150万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CRII: III: Towards Reasoning Augmented Searching for Domain-Specific Knowledge Screening
CRII:III:针对特定领域知识筛选的推理增强搜索
  • 批准号:
    2245907
  • 财政年份:
    2023
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
CRII: III: Towards Effective and Efficient City-scale Traffic Reconstruction
CRII:III:迈向有效和高效的城市规模交通重建
  • 批准号:
    2412340
  • 财政年份:
    2023
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
CRII: III: Towards Improving the Handling of Heterogeneity and Personalization in Federated Learning
CRII:III:改进联邦学习中异构性和个性化的处理
  • 批准号:
    2246067
  • 财政年份:
    2023
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Towards Effective Detection and Mitigation for Shortcut Learning: A Data Modeling Framework
协作研究:III:媒介:针对捷径学习的有效检测和缓解:数据建模框架
  • 批准号:
    2310262
  • 财政年份:
    2023
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了