Computationally efficient multiphysics and multiscale modeling approaches applied to porous materials engineering
适用于多孔材料工程的计算高效的多物理场和多尺度建模方法
基本信息
- 批准号:RGPIN-2022-04639
- 负责人:
- 金额:$ 2.33万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The widespread usage of porous materials in man-made advanced technologies arises from their physical, mechanical, optical, hydrodynamic and barrier properties which provide them with unique end-use functionalities. These properties are mainly determined by the interplay between the structures and the transport phenomena taking place within the material, often at different space and time scales. Understanding these interactions as well as the structure formation are therefore essential to guide manufacturers in the design of high-performance materials. Due to the complex geometries of these materials, the prediction and optimization of their performance by numerical simulations has long remained an intractable endeavour. Recent advances in numerical methods (e.g. the Lattice Boltzmann Method (LBM)) and high-performance CPU & GPU parallel computing over the last two decades have however opened a new world of possibilities for porous material design, and this project aims to take full advantage of them. The current proposal falls within the long-term goal of establishing a research group with a unique expertise in porous materials engineering to allow an in-depth understanding of: 1) the dynamics of formation of various porous materials, and 2) the relationships between their structure and end-use performance. To advance towards this goal, the next 5-year research proposal will focus on the development of new computationally efficient models for improving the performance of two specific porous materials having industrial or human health relevance, namely: 1) polymer foams used as efficient and lightweight heat and acoustic insulation materials in transportation, construction and packaging industries which can lead to considerable economic and environmental benefits, such as lower greenhouse gas and pollutant emissions through reduced fuel consumption; 2) protective face masks and respirators made of fibrous media as improving their efficiency, comfort and wearability can reduce health and safety issues in many workplaces concerned with air quality or during viral outbreaks. This program will address materials that can contribute to a better environment and human health. It is expected to have a noteworthy impact on both industry and society. Furthermore, it will train 3 PhDs in computational porous materials engineering and introduce 5 undergraduate students to research through internships. Finally, it is expected that the open-source development of the modeling platform will foster academic and industrial collaborations.
多孔材料在人造先进技术中的广泛使用源于其物理、机械、光学、流体动力学和屏障特性,这些特性为它们提供了独特的最终用途功能。这些性质主要取决于结构之间的相互作用和材料内发生的传输现象,通常在不同的空间和时间尺度。因此,了解这些相互作用以及结构形成对于指导制造商设计高性能材料至关重要。由于这些材料的复杂几何形状,通过数值模拟预测和优化其性能长期以来一直是一项棘手的工作。然而,在过去的二十年中,数值方法(例如格子玻尔兹曼方法(LBM))和高性能CPU和GPU并行计算的最新进展为多孔材料设计开辟了一个新的可能性世界,本项目旨在充分利用它们。目前的提议福尔斯属于建立一个研究小组的长期目标,该研究小组在多孔材料工程方面具有独特的专业知识,以便深入了解:1)各种多孔材料形成的动力学,以及2)其结构与最终用途性能之间的关系。为了实现这一目标,下一个五年研究计划将重点开发新的计算效率模型,以提高两种具有工业或人类健康相关性的特定多孔材料的性能,即:1)在运输、建筑和包装工业中用作有效和轻质隔热和隔音材料的聚合物泡沫,其可导致可观的经济和环境效益,例如,通过减少燃料消耗来减少温室气体和污染物排放; 2)由纤维介质制成的防护面罩和净化器,因为提高其效率、舒适度和可穿戴性,可以减少许多工作场所中与空气质量有关或在病毒爆发期间的健康和安全问题。该计划将涉及可以促进更好的环境和人类健康的材料。预计将对工业和社会产生重大影响。此外,还将培养3名计算多孔材料工程博士,并引进5名本科生通过实习进行研究。最后,预计建模平台的开源开发将促进学术和工业合作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vidal, David其他文献
An improved scoring function for suboptimal polar ligand complexes
- DOI:
10.1007/s10822-008-9246-z - 发表时间:
2009-03-01 - 期刊:
- 影响因子:3.5
- 作者:
Cincilla, Giovanni;Vidal, David;Pons, Miquel - 通讯作者:
Pons, Miquel
Ligand-Based Approaches to In Silico Pharmacology
- DOI:
10.1007/978-1-60761-839-3_19 - 发表时间:
2011-01-01 - 期刊:
- 影响因子:0
- 作者:
Vidal, David;Garcia-Serna, Ricard;Mestres, Jordi - 通讯作者:
Mestres, Jordi
Numerical investigation of the impact of washcoat distribution on the filtration performance of gasoline particulate filters
- DOI:
10.1016/j.ces.2020.115656 - 发表时间:
2020-08-10 - 期刊:
- 影响因子:4.7
- 作者:
Belot, Igor;Vidal, David;Bertrand, Francois - 通讯作者:
Bertrand, Francois
In Silico Receptorome Screening of Antipsychotic Drugs
- DOI:
10.1002/minf.201000055 - 发表时间:
2010-07-01 - 期刊:
- 影响因子:3.6
- 作者:
Vidal, David;Mestres, Jordi - 通讯作者:
Mestres, Jordi
Experimental Methods in Chemical Engineering: Discrete Element Method-DEM
- DOI:
10.1002/cjce.23501 - 发表时间:
2019-07-01 - 期刊:
- 影响因子:2.1
- 作者:
Blais, Bruno;Vidal, David;Chaouki, Jamal - 通讯作者:
Chaouki, Jamal
Vidal, David的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vidal, David', 18)}}的其他基金
Computationally efficient multiphysics and multiscale modeling approaches applied to porous materials engineering
适用于多孔材料工程的计算高效的多物理场和多尺度建模方法
- 批准号:
DGECR-2022-00026 - 财政年份:2022
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Launch Supplement
相似国自然基金
固定参数可解算法在平面图问题的应用以及和整数线性规划的关系
- 批准号:60973026
- 批准年份:2009
- 资助金额:32.0 万元
- 项目类别:面上项目
相似海外基金
Recyclable, smart and highly efficient wire-shaped solar cells waved portable/wearable electronics
可回收、智能、高效的线形太阳能电池挥舞着便携式/可穿戴电子产品
- 批准号:
24K15389 - 财政年份:2024
- 资助金额:
$ 2.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Efficient and unbiased estimation in adaptive platform trials
自适应平台试验中的高效且公正的估计
- 批准号:
MR/X030261/1 - 财政年份:2024
- 资助金额:
$ 2.33万 - 项目类别:
Research Grant
Electro-fermentation process design for efficient CO2 conversion into value-added products
电发酵工艺设计可有效地将二氧化碳转化为增值产品
- 批准号:
EP/Y002482/1 - 财政年份:2024
- 资助金额:
$ 2.33万 - 项目类别:
Research Grant
RII Track-4:NSF: HEAL: Heterogeneity-aware Efficient and Adaptive Learning at Clusters and Edges
RII Track-4:NSF:HEAL:集群和边缘的异质性感知高效自适应学习
- 批准号:
2327452 - 财政年份:2024
- 资助金额:
$ 2.33万 - 项目类别:
Standard Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 2.33万 - 项目类别:
Continuing Grant
CAREER: Resilient and Efficient Automatic Control in Energy Infrastructure: An Expert-Guided Policy Optimization Framework
职业:能源基础设施中的弹性和高效自动控制:专家指导的政策优化框架
- 批准号:
2338559 - 财政年份:2024
- 资助金额:
$ 2.33万 - 项目类别:
Standard Grant
CAREER: Towards highly efficient UV emitters with lattice engineered substrates
事业:采用晶格工程基板实现高效紫外线发射器
- 批准号:
2338683 - 财政年份:2024
- 资助金额:
$ 2.33万 - 项目类别:
Continuing Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 2.33万 - 项目类别:
Standard Grant
ASCENT: Heterogeneously Integrated and AI-Empowered Millimeter-Wave Wide-Bandgap Transmitter Array towards Energy- and Spectrum-Efficient Next-G Communications
ASCENT:异构集成和人工智能支持的毫米波宽带隙发射机阵列,实现节能和频谱高效的下一代通信
- 批准号:
2328281 - 财政年份:2024
- 资助金额:
$ 2.33万 - 项目类别:
Standard Grant