Computationally efficient multiphysics and multiscale modeling approaches applied to porous materials engineering
适用于多孔材料工程的计算高效的多物理场和多尺度建模方法
基本信息
- 批准号:RGPIN-2022-04639
- 负责人:
- 金额:$ 2.33万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The widespread usage of porous materials in man-made advanced technologies arises from their physical, mechanical, optical, hydrodynamic and barrier properties which provide them with unique end-use functionalities. These properties are mainly determined by the interplay between the structures and the transport phenomena taking place within the material, often at different space and time scales. Understanding these interactions as well as the structure formation are therefore essential to guide manufacturers in the design of high-performance materials. Due to the complex geometries of these materials, the prediction and optimization of their performance by numerical simulations has long remained an intractable endeavour. Recent advances in numerical methods (e.g. the Lattice Boltzmann Method (LBM)) and high-performance CPU & GPU parallel computing over the last two decades have however opened a new world of possibilities for porous material design, and this project aims to take full advantage of them. The current proposal falls within the long-term goal of establishing a research group with a unique expertise in porous materials engineering to allow an in-depth understanding of: 1) the dynamics of formation of various porous materials, and 2) the relationships between their structure and end-use performance. To advance towards this goal, the next 5-year research proposal will focus on the development of new computationally efficient models for improving the performance of two specific porous materials having industrial or human health relevance, namely: 1) polymer foams used as efficient and lightweight heat and acoustic insulation materials in transportation, construction and packaging industries which can lead to considerable economic and environmental benefits, such as lower greenhouse gas and pollutant emissions through reduced fuel consumption; 2) protective face masks and respirators made of fibrous media as improving their efficiency, comfort and wearability can reduce health and safety issues in many workplaces concerned with air quality or during viral outbreaks. This program will address materials that can contribute to a better environment and human health. It is expected to have a noteworthy impact on both industry and society. Furthermore, it will train 3 PhDs in computational porous materials engineering and introduce 5 undergraduate students to research through internships. Finally, it is expected that the open-source development of the modeling platform will foster academic and industrial collaborations.
多孔材料在人造的高级技术中的广泛使用源于其物理,机械,光学,流体动力和屏障特性,这些特性为其提供了独特的最终用途功能。这些特性主要取决于结构与材料内发生的转运现象之间的相互作用,通常是在不同的时空和时间尺度上。因此,了解这些相互作用以及结构形成对于指导制造商的高性能材料设计至关重要。由于这些材料的复杂几何形状,通过数值模拟对其性能的预测和优化长期以来一直是一项艰巨的努力。在过去的二十年中,数值方法的最新进展(例如,晶格Boltzmann方法(LBM))和高性能CPU&GPU平行计算已经为多孔材料设计的可能性开辟了一个新的世界,并且该项目旨在充分利用它们。当前的提案属于建立具有多孔材料工程专业知识的研究小组的长期目标,可以深入了解:1)形成各种多孔材料的动态,以及2)其结构和最终用途性能之间的关系。 To advance towards this goal, the next 5-year research proposal will focus on the development of new computationally efficient models for improving the performance of two specific porous materials having industrial or human health relevance, namely: 1) polymer foams used as efficient and lightweight heat and acoustic insulation materials in transportation, construction and packaging industries which can lead to considerable economic and environmental benefits, such as lower greenhouse gas and pollutant emissions through reduced fuel consumption; 2)用纤维介质制成的保护性面罩和呼吸器,因为它们提高了其效率,舒适性和耐磨性可以减少与空气质量或病毒爆发期间的许多工作场所的健康和安全问题。该计划将解决可以为更好的环境和人类健康做出贡献的材料。预计它将对行业和社会产生显着影响。此外,它将在计算多孔材料工程中培训3个博士学位,并向5名本科生介绍实习。最后,预计建模平台的开源开发将促进学术和工业合作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vidal, David其他文献
An improved scoring function for suboptimal polar ligand complexes
- DOI:
10.1007/s10822-008-9246-z - 发表时间:
2009-03-01 - 期刊:
- 影响因子:3.5
- 作者:
Cincilla, Giovanni;Vidal, David;Pons, Miquel - 通讯作者:
Pons, Miquel
Ligand-Based Approaches to In Silico Pharmacology
- DOI:
10.1007/978-1-60761-839-3_19 - 发表时间:
2011-01-01 - 期刊:
- 影响因子:0
- 作者:
Vidal, David;Garcia-Serna, Ricard;Mestres, Jordi - 通讯作者:
Mestres, Jordi
In Silico Receptorome Screening of Antipsychotic Drugs
- DOI:
10.1002/minf.201000055 - 发表时间:
2010-07-01 - 期刊:
- 影响因子:3.6
- 作者:
Vidal, David;Mestres, Jordi - 通讯作者:
Mestres, Jordi
Experimental Methods in Chemical Engineering: Discrete Element Method-DEM
- DOI:
10.1002/cjce.23501 - 发表时间:
2019-07-01 - 期刊:
- 影响因子:2.1
- 作者:
Blais, Bruno;Vidal, David;Chaouki, Jamal - 通讯作者:
Chaouki, Jamal
Determination of particle shape distribution of clay using an automated AFM image analysis method
- DOI:
10.1016/j.powtec.2010.05.016 - 发表时间:
2010-11-10 - 期刊:
- 影响因子:5.2
- 作者:
Gelinas, Veronique;Vidal, David - 通讯作者:
Vidal, David
Vidal, David的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vidal, David', 18)}}的其他基金
Computationally efficient multiphysics and multiscale modeling approaches applied to porous materials engineering
适用于多孔材料工程的计算高效的多物理场和多尺度建模方法
- 批准号:
DGECR-2022-00026 - 财政年份:2022
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Launch Supplement
相似国自然基金
基于太赫兹行波管放大器的高效率多路功率合成技术的研究
- 批准号:62371102
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于近地遥感与模型耦合的小麦氮高效表型精确预测评估
- 批准号:32371990
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
多源环境能量协同作用的微功率高效整流机制研究
- 批准号:62301348
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向移动边缘网络的高效智能云边端协同调度机制
- 批准号:62302343
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Computationally efficient multiphysics and multiscale modeling approaches applied to porous materials engineering
适用于多孔材料工程的计算高效的多物理场和多尺度建模方法
- 批准号:
DGECR-2022-00026 - 财政年份:2022
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Launch Supplement
CAREER: Efficient and Accurate Local Time-Stepping Algorithms for Multiscale Multiphysics Systems
职业:多尺度多物理系统的高效、准确的局部时间步进算法
- 批准号:
2041884 - 财政年份:2021
- 资助金额:
$ 2.33万 - 项目类别:
Continuing Grant
Efficient Bayesian Multi-fidelity Schemes for Analysis and Design of Complex Multiphysics Systems
用于复杂多物理场系统分析和设计的高效贝叶斯多保真度方案
- 批准号:
347224436 - 财政年份:2017
- 资助金额:
$ 2.33万 - 项目类别:
Priority Programmes
Efficient development and molecular design based on electron delocalization about extremely highly reactive super-electrophilic compounds
基于电子离域的极高反应性超亲电子化合物的高效开发和分子设计
- 批准号:
21550043 - 财政年份:2009
- 资助金额:
$ 2.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Theoretical foundations and applications of a technology for large-scale, efficient recognition of images based on near neighbor search on a set of local features
基于一组局部特征的近邻搜索的大规模、高效图像识别技术的理论基础和应用
- 批准号:
19300062 - 财政年份:2007
- 资助金额:
$ 2.33万 - 项目类别:
Grant-in-Aid for Scientific Research (B)