Stressing the Limits of Piezoelectricity
强调压电的局限性
基本信息
- 批准号:RGPIN-2022-05125
- 负责人:
- 金额:$ 2.04万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Piezoelectric materials have the reversible ability to convert between a mechanical strain and an electric field: this behavior touches our daily lives, enabling accelerometers, air-bag sensors, and microphones that are essential for the aerospace, automotive, and consumer electronics industries - all important branches of the Canadian economy. Controlling the behavior of these materials is generally attempted by varying the composition or chemistry, with limited success. Instead, we explore a complementary approach: how can an applied mechanical stress be harnessed to enhance the properties of piezoelectric materials? For example, piezoelectric properties decay with increasing temperature, and disappear once the Curie Temperature is reached, typically in the range of 25-250 °C. We will use stress engineering to enable lithium niobate (LiNbO3) to finally overcome this limitation, thereby allowing piezoelectric sensors to finally operate at temperatures exceeding 700 °C. This will allow the real-time health monitoring of critical high temperature systems to predict (and prevent) catastrophic failure, such as in aircraft turbine engines, nuclear reactors, or petrochemical plants. The vast majority of piezoelectric devices employ normal mechanical strains (i.e. deformation parallel or perpendicular to the electric field). This strain mode has allowed engineers to develop a wide range of important applications (guitar pick-ups, sonar, neonatal ultrasounds, etc.). However, what if a material existed that could instead twist in pure torsion when exposed to an electric field? Tellurium dioxide (TiO2) is predicted to be such an exceptional piezoelectric material. We will perform the necessary experimental confirmation and study the effect of mechanical stress on this interesting behavior. The revolutionary novel applications enabled by this unique geometry would include nanoscale gyroscopic accelerometers for use in airplanes, satellites, and cell phones. In general, most piezoelectric materials are rigid, brittle ceramics. Piezoelectric polymers have only very limited applications due to a polymer's relatively small piezoresponse, orders of magnitude lower than ceramics. However, some applications require the mechanical flexibility, biocompatibility, low cost, form factor, and manufacturability that only polymers can provide. We will therefore use mechanical stress engineering to build the first true polyvinylidene fluoride (PVDF) polymer nanofiber piezoelectric device. The consequences of realizing such a smart polymeric nanofiber, one thousand times thinner than a human hair, cannot be overstated: imagine artificial skin that can "feel" temperature and pressure, a T-shirt that can monitor your heartbeat, or an aircraft wing that measures its own deformation in-flight. Mechanical stress engineering can help overcome the temperature, geometry, and mechanical limitations of these promising piezoelectric materials.
压电材料具有在机械应变和电场之间转换的可逆能力:这种行为触及我们的日常生活,使加速度计,安全气囊传感器和麦克风成为航空航天,汽车和消费电子行业必不可少的产品-加拿大经济的所有重要分支。控制这些材料的行为通常是试图通过改变组成或化学,具有有限的成功。相反,我们探索一种互补的方法:如何利用施加的机械应力来提高压电材料的性能?例如,压电性能随着温度的升高而衰减,并且一旦达到居里温度(通常在25-250 °C的范围内)就消失。我们将使用应力工程使铌酸锂(LiNbO 3)最终克服这一限制,从而使压电传感器最终能够在超过700 °C的温度下工作。这将允许对关键高温系统进行实时健康监测,以预测(和预防)灾难性故障,例如飞机涡轮机发动机、核反应堆或石化工厂。绝大多数压电器件采用正常的机械应变(即平行或垂直于电场的变形)。这种应变模式使工程师能够开发广泛的重要应用(吉他拾音器、声纳、新生儿超声等)。然而,如果存在一种材料,当暴露在电场中时,它可以纯扭转呢?二氧化碲(TiO 2)被预测为这样一种特殊的压电材料。我们将进行必要的实验验证,并研究机械应力对这种有趣行为的影响。这种独特的几何形状所带来的革命性的新应用将包括用于飞机、卫星和手机的纳米级陀螺加速度计。一般来说,大多数压电材料是刚性的、脆性的陶瓷。由于聚合物的压电响应相对较小,比陶瓷低几个数量级,因此压电聚合物的应用非常有限。然而,一些应用需要只有聚合物才能提供的机械柔性、生物相容性、低成本、形状因子和可制造性。因此,我们将使用机械应力工程来建立第一个真正的聚偏氟乙烯(PVDF)聚合物压电器件。实现这种智能聚合物薄膜(比人类头发细一千倍)的后果怎么说都不为过:想象一下可以“感觉”温度和压力的人造皮肤,可以监测心跳的T恤,或者可以测量飞行中自身变形的机翼。机械应力工程可以帮助克服这些有前途的压电材料的温度,几何形状和机械限制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zednik, Ricardo其他文献
Zednik, Ricardo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zednik, Ricardo', 18)}}的其他基金
Stress and Interface Engineering of Functional Materials
功能材料的应力与界面工程
- 批准号:
RGPIN-2015-04185 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Antireflective nanopatterned surface treatment for glass
玻璃抗反射纳米图案表面处理
- 批准号:
539437-2019 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
Engage Grants Program
Stress and Interface Engineering of Functional Materials
功能材料的应力与界面工程
- 批准号:
RGPIN-2015-04185 - 财政年份:2018
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Stress and Interface Engineering of Functional Materials
功能材料的应力与界面工程
- 批准号:
RGPIN-2015-04185 - 财政年份:2017
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
High temperature stability study of lithium niobate
铌酸锂高温稳定性研究
- 批准号:
514471-2017 - 财政年份:2017
- 资助金额:
$ 2.04万 - 项目类别:
Engage Grants Program
Stress and Interface Engineering of Functional Materials
功能材料的应力与界面工程
- 批准号:
RGPIN-2015-04185 - 财政年份:2016
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Investigation of flexible electrode and circuit interconnect materials
柔性电极和电路互连材料的研究
- 批准号:
485504-2015 - 财政年份:2015
- 资助金额:
$ 2.04万 - 项目类别:
Engage Grants Program
Stress and Interface Engineering of Functional Materials
功能材料的应力与界面工程
- 批准号:
RGPIN-2015-04185 - 财政年份:2015
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Flexible printed electronic circuit and interconnect materials
柔性印刷电子电路和互连材料
- 批准号:
492051-2015 - 财政年份:2015
- 资助金额:
$ 2.04万 - 项目类别:
Engage Plus Grants Program
相似海外基金
Large Graph Limits of Stochastic Processes on Random Graphs
随机图上随机过程的大图极限
- 批准号:
EP/Y027795/1 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Research Grant
Stochastic processes in random environments with inhomogeneous scaling limits
具有不均匀缩放限制的随机环境中的随机过程
- 批准号:
24K06758 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Strategic Interactions, Learning, and Dynamics in Large-Scale Multi-Agent Systems: Achieving Tractability via Graph Limits
职业:大规模多智能体系统中的战略交互、学习和动态:通过图限制实现可处理性
- 批准号:
2340289 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Continuing Grant
CAREER: Robust Reinforcement Learning Under Model Uncertainty: Algorithms and Fundamental Limits
职业:模型不确定性下的鲁棒强化学习:算法和基本限制
- 批准号:
2337375 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Continuing Grant
Flame quenching and Lean blow-off limits of new zero/low-carbon fuels towards delivering a green Aviation; a combined Modelling & Experimental study
新型零碳/低碳燃料的熄火和精益吹气限制,以实现绿色航空;
- 批准号:
EP/Y020839/1 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Research Grant
Understanding plasticity of metals through mean-field limits of stochastic interacting particle systems
通过随机相互作用粒子系统的平均场限制了解金属的可塑性
- 批准号:
24K06843 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Learning from Data on Structured Complexes: Products, Bundles, and Limits
职业:从结构化复合体的数据中学习:乘积、捆绑和限制
- 批准号:
2340481 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Continuing Grant
Pushing the limits of electronic delocalization in organic molecules
突破有机分子电子离域的极限
- 批准号:
DE240100664 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Early Career Researcher Award
Asymptotic patterns and singular limits in nonlinear evolution problems
非线性演化问题中的渐近模式和奇异极限
- 批准号:
EP/Z000394/1 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Research Grant
Pushing the Limits of High-Field Solid-State NMR Technology: Enhancing Applications to Advanced Materials, the Life Sciences and Pharmaceuticals
突破高场固态核磁共振技术的极限:增强先进材料、生命科学和制药的应用
- 批准号:
EP/Z532836/1 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Research Grant