Remote Sensing of Vegetation Photosynthetic Capacity and Its Application to Global Carbon and Water Cycle Estimation

植被光合能力遥感及其在全球碳水循环估算中的应用

基本信息

  • 批准号:
    RGPIN-2020-05163
  • 负责人:
  • 金额:
    $ 4.44万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

The purpose of my research program is to retrieve new information from Earth observations to address global change issues. The overall goal of this proposed research is to retrieve the leaf-level photosynthetic capacity information at the global scale for improving terrestrial carbon and water cycle estimation. Specifically, the leaf maximum carboxylation rate (Vcmax), which determines leaf photosynthetic capacity, will be retrieved using multi-spectral and hyperspectral remote sensing data. Obtaining spatio-temporal information on Vcmax from remote sensing will have transformative impact on the global carbon and water cycle research because the current state of the art in global ecological and Earth system modelling is to assign Vcmax as constants by plant functional types (PTF), although for the same PTF it can vary 2-3 folds spatially and seasonally. Remote sensing provides unique spectral information for mapping the spatiotemporal variations of Vcmax, which has not yet been much explored and utilized in global ecological research. Through the support of an on-going NSERC discovery grant (ending 31 March 2020) and other projects, we successfully explored two ways of mapping Vcmax using remote sensing data: (1) retrieving leaf chlorophyll content (LCC) using multispectral optical data and converting it to Vcmax; and (2) using solar-induced chlorophyll fluorescence (SIF) measured by hyperspectral satellite sensors to optimize Vcmax. We produced the first ever global Vcmax map series using SIF data, albeit at a coarse spatial resolution (0.5°, about 55 km at the equator). In this proposed research, we will take this exploration to new heights by achieving the following objectives: (1) To develop an algorithm to use images of the Photochemical Reflectance Index (PRI) to interpolate SIF-based Vcmax maps from 0.5° to 1 km resolution, denoted as SIF+PRI; (2) To investigate the feasibility in converting the new global LCC maps into Vcmax maps so as to provide an independent way of mapping Vcmax at a higher spatial resolution (300 m) than the SIF-based Vcmax maps (0.5° resolution); (3) To evaluate and validate these Vcmax maps derived from LCC and SIF+PRI using ground-based Vcmax measurements and high resolution (20 m) remote sensing data; and (4) To demonstrate the improvements in terrestrial carbon and water cycle modeling using the Vcmax map series generated using remote sensing data against ground measurements of gross primary productivity (GPP) and evapotranspiration (ET) at flux towers in Canada, USA, Europe and China, for a range of PFTs. This proposed research will provide an opportunity to train 1 PDF, two Ph.D. and two M.Sc. students.
我的研究计划的目的是从地球观测中检索新的信息,以解决全球变化问题。本研究的总体目标是在全球范围内恢复叶片光合能力信息,以提高陆地碳和水循环的估计。具体而言,叶片最大羧化率(Vcmax),决定叶片光合能力,将使用多光谱和高光谱遥感数据检索。从遥感中获得Vcmax的时空信息将对全球碳和水循环研究产生变革性影响,因为全球生态和地球系统建模的当前最新技术是将Vcmax指定为植物功能类型(PTF)的常数,尽管对于同一PTF,它可以在空间和季节上变化2-3倍。遥感为绘制Vcmax的时空变化提供了独特的光谱信息,这在全球生态研究中尚未得到太多的探索和利用。通过正在进行的NSERC发现资助(截至2020年3月31日)和其他项目的支持,我们成功探索了使用遥感数据绘制Vcmax的两种方法:(1)使用多光谱光学数据检索叶片叶绿素含量(LCC)并将其转换为Vcmax;和(2)使用高光谱卫星传感器测量的太阳诱导叶绿素荧光(SIF)来优化Vcmax。我们使用SIF数据制作了有史以来第一个全球Vcmax地图系列,尽管空间分辨率较低(0.5°,赤道约55公里)。在本研究中,我们将通过实现以下目标将这一探索推向新的高度:(1)开发一种算法,利用光化学反射指数(PRI)图像来内插基于SIF的Vcmax地图,从0.5°到1 km分辨率,表示为SIF+PRI;(2)研究将新的全球LCC地图转换为Vcmax地图的可行性,以便提供一种独立的方式来以更高的空间分辨率(300 m)绘制Vcmax。比基于SIF的Vcmax图(3)利用地面Vcmax测量和高分辨率(20米)遥感数据,评价和验证从LCC和SIF+PRI得出的Vcmax图;(4)利用遥感数据生成的Vcmax图系列,对照总初级生产力的地面测量值,展示陆地碳和水循环建模的改进(GPP)和蒸散量(ET)在通量塔在加拿大,美国,欧洲和中国,为一系列的PFT。这项拟议的研究将提供一个机会,培养1名PDF,两名博士。和两名理学硕士

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chen, Jing其他文献

Predicting the size of individual and group differences on speeded cognitive tasks
  • DOI:
    10.3758/bf03194103
  • 发表时间:
    2007-06-01
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Chen, Jing;Hale, Sandra;Myerson, Joel
  • 通讯作者:
    Myerson, Joel
Highly sensitive refractive-index sensor based on strong magnetic resonance in metamaterials
  • DOI:
    10.7567/1882-0786/ab14fa
  • 发表时间:
    2019-05-01
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Chen, Jing;Nie, Hai;Cai, Pinggen
  • 通讯作者:
    Cai, Pinggen
Strong Magnetic Plasmon Resonance in a Simple Metasurface for High-Quality Sensing
  • DOI:
    10.1109/jlt.2021.3074334
  • 发表时间:
    2021-07-01
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Chen, Jing;Kuang, Yihan;Gao, Fan
  • 通讯作者:
    Gao, Fan
Euthoracaphis Takahashi (Hemiptera: Aphididae: Hormaphidinae), a generic account, description of a new species from China, and a key to species
Euthoracaphis Takahashi(半翅目:蚜科:Hormaphidinae),中国一新种的一般说明、描述和物种检索表
  • DOI:
    10.11646/zootaxa.2284.1.2
  • 发表时间:
    2009-11
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Chen, Jing;Fang, Yan;Qiao, Gexia
  • 通讯作者:
    Qiao, Gexia
An empowerment-based, healthy dietary behavioral intervention to ameliorate functional constipation.
  • DOI:
    10.3389/fnut.2023.1043031
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Wang, Xuesong;Zhong, Xiaohui;Liu, Dongsong;Cao, Hong;Chen, Jing;Wang, Qinyue;Xia, Yanping;Zhang, Feng
  • 通讯作者:
    Zhang, Feng

Chen, Jing的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chen, Jing', 18)}}的其他基金

Managing customer returns effectively in the supply chain
在供应链中有效管理客户退货
  • 批准号:
    RGPIN-2022-03957
  • 财政年份:
    2022
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Discovery Grants Program - Individual
Remote Sensing of Vegetation Photosynthetic Capacity and Its Application to Global Carbon and Water Cycle Estimation
植被光合能力遥感及其在全球碳水循环估算中的应用
  • 批准号:
    RGPIN-2020-05163
  • 财政年份:
    2021
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Discovery Grants Program - Individual
Optimal Design of Customer Returns Policy and its Impact on Supply Chain
客户退货政策的优化设计及其对供应链的影响
  • 批准号:
    RGPIN-2016-05008
  • 财政年份:
    2021
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Discovery Grants Program - Individual
Remote Sensing of Vegetation Photosynthetic Capacity and Its Application to Global Carbon and Water Cycle Estimation
植被光合能力遥感及其在全球碳水循环估算中的应用
  • 批准号:
    RGPIN-2020-05163
  • 财政年份:
    2020
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Discovery Grants Program - Individual
Optimal Design of Customer Returns Policy and its Impact on Supply Chain
客户退货政策的优化设计及其对供应链的影响
  • 批准号:
    RGPIN-2016-05008
  • 财政年份:
    2020
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Discovery Grants Program - Individual
Field Measurements of Leaf Photosynthetic Capacity (Vcmax) for Carbon Cycle Research
用于碳循环研究的叶片光合能力 (Vcmax) 现场测量
  • 批准号:
    RTI-2021-00606
  • 财政年份:
    2020
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Research Tools and Instruments
Optimal Design of Customer Returns Policy and its Impact on Supply Chain
客户退货政策的优化设计及其对供应链的影响
  • 批准号:
    RGPIN-2016-05008
  • 财政年份:
    2019
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Discovery Grants Program - Individual
Global Mapping of Vegetation Physiological Parameters
植被生理参数的全球制图
  • 批准号:
    RGPIN-2015-04066
  • 财政年份:
    2019
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Discovery Grants Program - Individual
Optimal Design of Customer Returns Policy and its Impact on Supply Chain
客户退货政策的优化设计及其对供应链的影响
  • 批准号:
    RGPIN-2016-05008
  • 财政年份:
    2018
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Discovery Grants Program - Individual
Global Mapping of Vegetation Physiological Parameters
植被生理参数的全球制图
  • 批准号:
    RGPIN-2015-04066
  • 财政年份:
    2018
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

病原菌群体感应监管(policing quorum sensing)的生理生态机理及分子调控机制
  • 批准号:
    31570490
  • 批准年份:
    2015
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
基于Compressive sensing理论的单探测器太赫兹成像技术
  • 批准号:
    60977009
  • 批准年份:
    2009
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目
水稻OsCAS(Calcium-sensing Receptor)基因的功能分析
  • 批准号:
    30900771
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
Compressive Sensing 理论及信号最佳稀疏分解方法研究
  • 批准号:
    60776795
  • 批准年份:
    2007
  • 资助金额:
    28.0 万元
  • 项目类别:
    联合基金项目
生防假单胞菌群体感应(quorum-sensing)系统的鉴定和功能分析
  • 批准号:
    30370952
  • 批准年份:
    2003
  • 资助金额:
    21.0 万元
  • 项目类别:
    面上项目

相似海外基金

ORE-CZ: Integrating Vegetation Phenology to Understand the Sensitivity of Dynamic Water Storage to Drought Using Remote Sensing Data and Hydrology Modeling
ORE-CZ:利用遥感数据和水文学模型,整合植被物候学来了解动态蓄水对干旱的敏感性
  • 批准号:
    2228047
  • 财政年份:
    2023
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Standard Grant
Remote Sensing of Vegetation Types, Productivity and Change in the Canadian High Arctic
加拿大高北极植被类型、生产力和变化的遥感
  • 批准号:
    RGPIN-2019-04151
  • 财政年份:
    2022
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Discovery Grants Program - Individual
Development of wind erosion risk assessment using dry vegetation index from remote sensing
利用遥感干燥植被指数开发风蚀风险评估
  • 批准号:
    22K18025
  • 财政年份:
    2022
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Smart deep learning by incorporating remote sensing domain knowledge in vegetation characterization
将遥感领域知识融入植被表征中的智能深度学习
  • 批准号:
    RGPIN-2021-03624
  • 财政年份:
    2022
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Discovery Grants Program - Individual
Estimating the wind speed of tornadic events through the remote sensing of damage to vegetation
通过植被受损遥感估算龙卷风事件的风速
  • 批准号:
    563774-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 4.44万
  • 项目类别:
    University Undergraduate Student Research Awards
Remote Sensing of Vegetation Types, Productivity and Change in the Canadian High Arctic
加拿大高北极植被类型、生产力和变化的遥感
  • 批准号:
    RGPIN-2019-04151
  • 财政年份:
    2021
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Discovery Grants Program - Individual
Remote Sensing of Vegetation Photosynthetic Capacity and Its Application to Global Carbon and Water Cycle Estimation
植被光合能力遥感及其在全球碳水循环估算中的应用
  • 批准号:
    RGPIN-2020-05163
  • 财政年份:
    2021
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Discovery Grants Program - Individual
Smart deep learning by incorporating remote sensing domain knowledge in vegetation characterization
将遥感领域知识融入植被表征中的智能深度学习
  • 批准号:
    RGPIN-2021-03624
  • 财政年份:
    2021
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Discovery Grants Program - Individual
Remote Sensing of Vegetation Photosynthetic Capacity and Its Application to Global Carbon and Water Cycle Estimation
植被光合能力遥感及其在全球碳水循环估算中的应用
  • 批准号:
    RGPIN-2020-05163
  • 财政年份:
    2020
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Discovery Grants Program - Individual
Remote Sensing of Vegetation Types, Productivity and Change in the Canadian High Arctic
加拿大高北极植被类型、生产力和变化的遥感
  • 批准号:
    RGPIN-2019-04151
  • 财政年份:
    2020
  • 资助金额:
    $ 4.44万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了