Smart deep learning by incorporating remote sensing domain knowledge in vegetation characterization
将遥感领域知识融入植被表征中的智能深度学习
基本信息
- 批准号:RGPIN-2021-03624
- 负责人:
- 金额:$ 2.19万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this research program is to develop innovative methods to exploit the synergy between Earth observation and artificial intelligence (specifically deep learning). It is motivated by the demand for advancing science and innovation in the inventory and assessment of vegetation canopies. This is driven by technological developments in observing the Earth's surface from space, satellites or aircraft (remote sensing), and enabled by the development of deep learning. The past several years have witnessed a massive growth of deep learning in remote sensing. Even though some progress has been made, deep learning research in remote sensing is still in its infancy. It has mainly focused on applying and fine-tuning existing networks, and deep learning approaches are currently only data-driven and without any explicitly expressed existing knowledge in the domain. It is not necessary to learn what we have already known. To fully realize the potential generated by deep learning in revolutionizing remotely sensed data analysis, research is needed for in-depth integration between deep learning and remote sensing. To date, deep learning has been used to classify broad categories of land cover, but rarely for characterizing forest canopies and identifying tree species, which is important but challenging in Earth observation. The objective of this research program is to develop innovative approaches to integrate remote sensing domain knowledge and deep learning to address challenges in three related areas: 1) individual tree crown delineation, 2) individual tree species classification, and 3) the retrieval of biophysical parameters of vegetation canopies. Moreover, we will develop algorithms by exploiting the use of traditional machine learning methods and prior knowledge to solve the issues related to limited training data, the incorporation of the prior knowledge in the design the deep learning network and in the learning process, and the effective utilization of multi-source remotely sensed data. As the outcome of this research program we will ensure that Canada remains at the forefront of the artificial intelligence revolution by bridging the gap between deep learning and remote sensing. The research results will deepen our understanding of deep learning in advancing scientific and industrial applications. By providing efficient and effective ways to keep track of the species, functional status and productivity of forests, from proposed research we will help Canada be a better steward of its greatest natural resource. The practical applications are significant and wide ranging, from wildlife habitat mapping, to biofuel production, to forest fire prevention. Finally, over the next five years, HQP including 4 PhD, 4 MSc and 4 undergraduate students, will be trained to gain advanced skills to excel in either academia or industry, using their expertise to enhance Canada's brain trust in artificial intelligence and geospatial technologies.
该研究计划的目标是开发创新方法,以利用地球观测和人工智能(特别是深度学习)之间的协同作用。它的动机是推动植被冠层清查和评估方面的科学和创新的需求。这是由从太空、卫星或飞机(遥感)观测地球表面的技术发展所推动的,并由深度学习的发展所实现。在过去的几年里,深度学习在遥感领域取得了巨大的增长。尽管已经取得了一些进展,但遥感领域的深度学习研究仍处于起步阶段。它主要集中在应用和微调现有的网络,深度学习方法目前只是数据驱动的,没有任何明确表达的领域中的现有知识。没有必要去学习我们已经知道的东西。为了充分发挥深度学习在革新遥感数据分析方面的潜力,需要研究深度学习和遥感之间的深度整合。 到目前为止,深度学习已被用于对广泛的土地覆盖类别进行分类,但很少用于描述森林冠层和识别树种,这在地球观测中很重要但具有挑战性。该研究计划的目标是开发创新方法,将遥感领域知识和深度学习相结合,以解决三个相关领域的挑战:1)个体树冠描绘,2)个体树种分类,3)植被冠层生物物理参数的检索。此外,我们将通过利用传统机器学习方法和先验知识来开发算法,以解决与有限训练数据相关的问题,将先验知识纳入深度学习网络的设计和学习过程中,以及有效利用多源遥感数据。 作为这项研究计划的成果,我们将确保加拿大通过弥合深度学习和遥感之间的差距,保持在人工智能革命的最前沿。研究结果将加深我们对深度学习在推进科学和工业应用方面的理解。通过提供有效的方法来跟踪森林的物种、功能状态和生产力,我们将帮助加拿大更好地管理其最大的自然资源。实际应用是重要和广泛的,从野生动物栖息地测绘,生物燃料生产,森林防火。最后,在未来五年内,HQP包括4名博士,4名硕士和4名本科生,将接受培训,以获得在学术界或工业界脱颖而出的高级技能,利用他们的专业知识来增强加拿大在人工智能和地理空间技术方面的智囊团。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hu, Baoxin其他文献
An individual tree crown delineation method based on multi-scale segmentation of imagery
- DOI:
10.1016/j.isprsjprs.2012.04.003 - 发表时间:
2012-06-01 - 期刊:
- 影响因子:12.7
- 作者:
Jing, Linhai;Hu, Baoxin;Li, Jili - 通讯作者:
Li, Jili
Improving the efficiency and accuracy of individual tree crown delineation from high-density LiDAR data
- DOI:
10.1016/j.jag.2013.06.003 - 发表时间:
2014-02-01 - 期刊:
- 影响因子:7.5
- 作者:
Hu, Baoxin;Li, Jili;Judah, Aaron - 通讯作者:
Judah, Aaron
Estimating crop stresses, aboveground dry biomass and yield of corn using multi-temporal optical data combined with a radiation use efficiency model
- DOI:
10.1016/j.rse.2010.01.004 - 发表时间:
2010-06-15 - 期刊:
- 影响因子:13.5
- 作者:
Liu, Jiangui;Pattey, Elizabeth;Hu, Baoxin - 通讯作者:
Hu, Baoxin
Comparative study between a new nonlinear model and common linear model for analysing laboratory simulated-forest hyperspectral data
- DOI:
10.1080/01431160802558659 - 发表时间:
2009-01-01 - 期刊:
- 影响因子:3.4
- 作者:
Fan, Wenyi;Hu, Baoxin;Li, Mingze - 通讯作者:
Li, Mingze
Automated Delineation of Individual Tree Crowns from Lidar Data by Multi-Scale Analysis and Segmentation
- DOI:
10.14358/pers.78.11.1275 - 发表时间:
2012-12-01 - 期刊:
- 影响因子:1.3
- 作者:
Jing, Linhai;Hu, Baoxin;Noland, Thomas - 通讯作者:
Noland, Thomas
Hu, Baoxin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hu, Baoxin', 18)}}的其他基金
Smart deep learning by incorporating remote sensing domain knowledge in vegetation characterization
将遥感领域知识融入植被表征中的智能深度学习
- 批准号:
RGPIN-2021-03624 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Development of innovative fusion strategies and methods to improve vegetation characterization from multi-sensor remotely sensed data
开发创新的融合策略和方法,以改善多传感器遥感数据的植被特征
- 批准号:
RGPIN-2015-06563 - 财政年份:2019
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Improving the characterization of permafrost using polarimetric SAR interferometry (pol-inSAR)
使用偏振 SAR 干涉测量 (pol-inSAR) 改善永久冻土的表征
- 批准号:
513708-2017 - 财政年份:2019
- 资助金额:
$ 2.19万 - 项目类别:
Collaborative Research and Development Grants
Improving the characterization of permafrost using polarimetric SAR interferometry (pol-inSAR)
使用偏振 SAR 干涉测量 (pol-inSAR) 改善永久冻土的表征
- 批准号:
513708-2017 - 财政年份:2018
- 资助金额:
$ 2.19万 - 项目类别:
Collaborative Research and Development Grants
Development of innovative fusion strategies and methods to improve vegetation characterization from multi-sensor remotely sensed data
开发创新的融合策略和方法,以改善多传感器遥感数据的植被特征
- 批准号:
RGPIN-2015-06563 - 财政年份:2018
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
A GIS-based system for assessing emerald ash borer infestation
基于 GIS 的白蜡虫侵染评估系统
- 批准号:
490711-2015 - 财政年份:2018
- 资助金额:
$ 2.19万 - 项目类别:
Collaborative Research and Development Grants
A GIS-based system for assessing emerald ash borer infestation
基于 GIS 的白蜡虫侵染评估系统
- 批准号:
490711-2015 - 财政年份:2017
- 资助金额:
$ 2.19万 - 项目类别:
Collaborative Research and Development Grants
Development of innovative fusion strategies and methods to improve vegetation characterization from multi-sensor remotely sensed data
开发创新的融合策略和方法,以改善多传感器遥感数据的植被特征
- 批准号:
RGPIN-2015-06563 - 财政年份:2017
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Development of innovative fusion strategies and methods to improve vegetation characterization from multi-sensor remotely sensed data
开发创新的融合策略和方法,以改善多传感器遥感数据的植被特征
- 批准号:
RGPIN-2015-06563 - 财政年份:2016
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Development of innovative fusion strategies and methods to improve vegetation characterization from multi-sensor remotely sensed data
开发创新的融合策略和方法,以改善多传感器遥感数据的植被特征
- 批准号:
RGPIN-2015-06563 - 财政年份:2015
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
基于深穿透拉曼光谱的安全光照剂量的深层病灶无创检测与深度预测
- 批准号:82372016
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
GREB1突变介导雌激素受体信号通路导致深部浸润型子宫内膜异位症的分子遗传机制研究
- 批准号:82371652
- 批准年份:2023
- 资助金额:45.00 万元
- 项目类别:面上项目
基于Deep Unrolling的高分辨近红外二区荧光分子断层成像方法研究
- 批准号:12271434
- 批准年份:2022
- 资助金额:46 万元
- 项目类别:面上项目
基于深度森林(Deep Forest)模型的表面增强拉曼光谱分析方法研究
- 批准号:2020A151501709
- 批准年份:2020
- 资助金额:10.0 万元
- 项目类别:省市级项目
面向Deep Web的数据整合关键技术研究
- 批准号:61872168
- 批准年份:2018
- 资助金额:62.0 万元
- 项目类别:面上项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
- 批准号:61672236
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于语义计算的海量Deep Web知识探索机制研究
- 批准号:61272411
- 批准年份:2012
- 资助金额:80.0 万元
- 项目类别:面上项目
Deep Web数据集成查询结果抽取与整合关键技术研究
- 批准号:61100167
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
In vivo feasibility of a smart needle ablation treatment for liver cancer
智能针消融治疗肝癌的体内可行性
- 批准号:
10699190 - 财政年份:2023
- 资助金额:
$ 2.19万 - 项目类别:
Real-time violence detection using smart camera stereovision video and efficient deep learning backbones
使用智能相机立体视觉视频和高效的深度学习主干进行实时暴力检测
- 批准号:
2877765 - 财政年份:2023
- 资助金额:
$ 2.19万 - 项目类别:
Studentship
SCH: Smart Auscultation for Pulmonary Diagnostics and Imaging
SCH:用于肺部诊断和成像的智能听诊
- 批准号:
10435909 - 财政年份:2022
- 资助金额:
$ 2.19万 - 项目类别:
Smart driving technology for non-invasive detection of age-related cognitive decline
用于无创检测与年龄相关的认知衰退的智能驾驶技术
- 批准号:
10484798 - 财政年份:2022
- 资助金额:
$ 2.19万 - 项目类别:
The Development of a Smart Telehealth ECG and Human Activity Monitoring System to Improve Cardiovascular health of Older Adults
开发智能远程医疗心电图和人体活动监测系统以改善老年人的心血管健康
- 批准号:
10439299 - 财政年份:2022
- 资助金额:
$ 2.19万 - 项目类别:
SCH: Smart Auscultation for Pulmonary Diagnostics and Imaging
SCH:用于肺部诊断和成像的智能听诊
- 批准号:
10590732 - 财政年份:2022
- 资助金额:
$ 2.19万 - 项目类别:
An IoT security framework using deep/machine learning techniques for smart offices
使用深度/机器学习技术实现智能办公室的物联网安全框架
- 批准号:
563132-2021 - 财政年份:2022
- 资助金额:
$ 2.19万 - 项目类别:
Alliance Grants
An IoT security framework using deep/machine learning techniques for smart offices
使用深度/机器学习技术实现智能办公室的物联网安全框架
- 批准号:
563132-2021 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Alliance Grants
Smart deep learning by incorporating remote sensing domain knowledge in vegetation characterization
将遥感领域知识融入植被表征中的智能深度学习
- 批准号:
RGPIN-2021-03624 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Smart Gauge - Automatic rail survey processing and gauging using deep learning.
智能测量 - 使用深度学习自动进行铁路测量处理和测量。
- 批准号:
971730 - 财政年份:2020
- 资助金额:
$ 2.19万 - 项目类别:
Small Business Research Initiative