Satellite remote sensing of global change ecology from the leaf to the globe

卫星遥感全球变化生态从树叶到地球

基本信息

  • 批准号:
    RGPIN-2020-05708
  • 负责人:
  • 金额:
    $ 2.19万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

The global carbon (C) cycle is the exchange of C among the atmosphere, oceans, and land. The land C cycle is less understood than the atmosphere and ocean C cycles, contributing the largest error to the annual global C budget estimates. This is attributed largely to the lack of understanding of the magnitude of CO2 fertilization effect on plant growth and the changing sensitivity of plant growth to climate change. The proposed research program will integrate C cycle models and emerging ground and satellite technologies that directly measure photosynthesis for improved understanding of photosynthetic processes to narrow the land C cycle estimation uncertainty. The program proposes a pipeline of streamlined approaches for satellite remote sensing of global change ecology of terrestrial ecosystems that range from algorithm development and validation at the site level to improved product development at a regional scale, and global change impact study at a global scale. The overarching long-term vision of the research program is to quantify and attribute the roles of human influence and natural variability on satellite-detected changes in terrestrial ecosystem functioning. In light of the long-term vision, the following three contingent yet independent objectives will be achieved through the proposed 5-year program. At site level, ground-based sun-induced chlorophyll fluorescence (SIF) and hyperspectral measures of photosynthetic pigment pools will be used to parameterize chlorophyll light use behaviour at Turkey Point and Borden Forest Research Stations. At the regional scale, photosynthesis and phenology will be modelled for high latitude ecosystems using satellite-based hyperspectral and SIF observations. Finally, a global scale study of moisture stress and CO2 fertilization effects on plant growth will be conducted through model-data integration scheme that involves satellite and climate data archives, atmospheric CO2 concentration and C cycle models. The site level study will strengthen Canada's CO2 flux tower networks that are required for long-term environmental monitoring through instrumentation while improving our understanding of photosynthesis processes. In addition to its contribution towards narrowing the land C cycle estimation uncertainty, the proposed research program will build Canada's scientific capability in satellite remote sensing of global change and terrestrial ecosystems to support national climate change impact assessment and policy formulation. The regional focus on high latitude ecosystems will significantly benefit Earth science communities since knowing how these rapidly changing ecosystems are currently responding is paramount to predict what is yet to come. The high-latitude photosynthesis and phenology estimates can be used as benchmark data to quantify vegetation productivity and health responses to climate change, insects, wildfires and resource mining, all of which are emerging threats to Canada's forests.
全球碳(C)循环是碳在大气、海洋和陆地之间的交换。陆地碳循环比大气和海洋碳循环了解得更少,是年度全球碳预算估计的最大误差。这在很大程度上是由于缺乏对CO2施肥对植物生长影响的程度以及植物生长对气候变化的敏感性的认识。拟议的研究计划将整合碳循环模型和新兴的地面和卫星技术,直接测量光合作用,以提高对光合作用过程的理解,缩小土地碳循环估计的不确定性。该方案提出了一系列简化的方法,用于陆地生态系统全球变化生态学的卫星遥感,其范围从站点一级的算法开发和验证到区域范围内的改进产品开发,以及全球范围内的全球变化影响研究。该研究计划的总体长期愿景是量化和归因于人类影响和自然变异对卫星探测到的陆地生态系统功能变化的作用。根据长期愿景,将通过拟议的五年计划实现以下三个临时但独立的目标。在站点一级,将利用地面太阳诱导叶绿素荧光和光合色素库的高光谱测量,对土耳其角和博登森林研究站的叶绿素光利用行为进行参数化。在区域范围内,将利用卫星高光谱和SIF观测,为高纬度生态系统建立光合作用和物候模型。最后,将通过涉及卫星和气候数据档案、大气CO2浓度和C循环模型的模型数据集成方案,开展全球范围的水分胁迫和CO2施肥对植物生长的影响研究。现场一级的研究将加强加拿大的CO2通量塔网络,这是通过仪器进行长期环境监测所必需的,同时提高我们对光合作用过程的理解。除了有助于缩小土地碳循环估算的不确定性之外,拟议的研究方案还将建设加拿大在全球变化和陆地生态系统卫星遥感方面的科学能力,以支持国家气候变化影响评估和政策制定。对高纬度生态系统的区域关注将使地球科学界受益匪浅,因为了解这些快速变化的生态系统目前的反应对于预测未来至关重要。高纬度光合作用和物候估计值可用作基准数据,以量化植被生产力和健康对气候变化、昆虫、野火和资源开采的反应,所有这些都是加拿大森林面临的新威胁。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gonsamo, Alemu其他文献

Predicting deciduous forest carbon uptake phenology by upscaling FLUXNET measurements using remote sensing data
  • DOI:
    10.1016/j.agrformet.2012.06.006
  • 发表时间:
    2012-11-15
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Gonsamo, Alemu;Chen, Jing M.;Dragoni, Danilo
  • 通讯作者:
    Dragoni, Danilo
Spectral Response Function Comparability Among 21 Satellite Sensors for Vegetation Monitoring
Citizen Science: linking the recent rapid advances of plant flowering in Canada with climate variability.
  • DOI:
    10.1038/srep02239
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Gonsamo, Alemu;Chen, Jing M.;Wu, Chaoyang
  • 通讯作者:
    Wu, Chaoyang
Citizen science: best practices to remove observer bias in trend analysis
Methodology comparison for slope correction in canopy leaf area index estimation using hemispherical photography
  • DOI:
    10.1016/j.foreco.2008.05.032
  • 发表时间:
    2008-08-10
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Gonsamo, Alemu;Pellikka, Petri
  • 通讯作者:
    Pellikka, Petri

Gonsamo, Alemu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gonsamo, Alemu', 18)}}的其他基金

Field spectroradiometer suite for in-situ characterization of plants, soils and peats, and calibration of optical sensors and satellite observations
现场光谱辐射计套件,用于植物、土壤和泥炭的原位表征以及光学传感器和卫星观测的校准
  • 批准号:
    RTI-2023-00084
  • 财政年份:
    2022
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Research Tools and Instruments
Remote Sensing of Terrestrial Ecosystems
陆地生态系统遥感
  • 批准号:
    CRC-2019-00139
  • 财政年份:
    2022
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Canada Research Chairs
Remote Sensing Of Terrestrial Ecosystems
陆地生态系统遥感
  • 批准号:
    CRC-2019-00139
  • 财政年份:
    2021
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Canada Research Chairs
Satellite remote sensing of global change ecology from the leaf to the globe
卫星遥感全球变化生态从树叶到地球
  • 批准号:
    RGPIN-2020-05708
  • 财政年份:
    2021
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
National carbon flux estimation system for forest ecosystems of Canada
加拿大森林生态系统国家碳通量估算系统
  • 批准号:
    566310-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Alliance Grants
Satellite remote sensing of global change ecology from the leaf to the globe
卫星遥感全球变化生态从树叶到地球
  • 批准号:
    RGPIN-2020-05708
  • 财政年份:
    2020
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Satellite remote sensing of global change ecology from the leaf to the globe
卫星遥感全球变化生态从树叶到地球
  • 批准号:
    DGECR-2020-00245
  • 财政年份:
    2020
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Launch Supplement
Remote Sensing of Terrestrial Ecosystems
陆地生态系统遥感
  • 批准号:
    CRC-2019-00139
  • 财政年份:
    2020
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Canada Research Chairs

相似国自然基金

低纬度边缘海颗粒有机碳的卫星遥感算法研究
  • 批准号:
    41076114
  • 批准年份:
    2010
  • 资助金额:
    54.0 万元
  • 项目类别:
    面上项目

相似海外基金

Evaluation of countermeasures against heat illness from both hardware and software perspectives using satellite remote sensing and human flow data
利用卫星遥感和人流数据从硬件和软件角度评估中暑对策
  • 批准号:
    23K13457
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Remote sensing of river flow using uncrewed aerial systems (UAS) and satellite platforms
使用无人航空系统(UAS)和卫星平台遥感河流流量
  • 批准号:
    2882137
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Studentship
Collaborative Research: BoCP-Implementation: forecasting functional biodiversity change with satellite remote sensing and modeling
合作研究:BoCP-实施:利用卫星遥感和建模预测功能性生物多样性变化
  • 批准号:
    2326013
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Continuing Grant
Collaborative Research: BoCP-Implementation: forecasting functional biodiversity change with satellite remote sensing and modeling
合作研究:BoCP-实施:利用卫星遥感和建模预测功能性生物多样性变化
  • 批准号:
    2326014
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Continuing Grant
Enhancement of Multi-Constellation Satellite-Based Precise Positioning and Ionospheric Remote Sensing
多星座卫星精密定位与电离层遥感增强
  • 批准号:
    RGPIN-2019-05110
  • 财政年份:
    2022
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
New Statistical Methods for Computer-Assisted Inversion with Applications to Satellite Remote Sensing
计算机辅助反演统计新方法及其在卫星遥感中的应用
  • 批准号:
    2210664
  • 财政年份:
    2022
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Standard Grant
IRES Track I: U.S.-Bangladesh collaboration to improve air quality: Application of low-cost sensor technologies and satellite remote sensing
IRES 第一轨:美国与孟加拉国合作改善空气质量:低成本传感器技术和卫星遥感的应用
  • 批准号:
    2153605
  • 财政年份:
    2022
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Standard Grant
Multimodal inference of coral and seagrass distribution using combined seafloor imagery and satellite remote sensing data
利用海底图像和卫星遥感数据组合对珊瑚和海草分布进行多模态推断
  • 批准号:
    22H01695
  • 财政年份:
    2022
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Enhanced Wetland Mapping and Monitoring at High Latitudes Using Satellite Remote Sensing: Applications of Spaceborne Radar and Artificial Intelligence
利用卫星遥感增强高纬度湿地测绘和监测:星载雷达和人工智能的应用
  • 批准号:
    570220-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
The application of satellite remote sensing and machine learning for modelling impacts of regenerative farming practices
卫星遥感和机器学习在再生农业实践影响建模中的应用
  • 批准号:
    2842273
  • 财政年份:
    2022
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了