Remote Sensing-based Forest Fire Occurrence and Management System

基于遥感的森林火灾发生与管理系统

基本信息

  • 批准号:
    RGPIN-2022-03039
  • 负责人:
  • 金额:
    $ 2.62万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Over the past 25 years, Canada has had an average of 7300 fires annually - each year about 2.5 million hectares of forest are destroyed. Over the past decade alone, Canadians have spent between $800 million and $1.5 billion per annum on fighting fires. Though fires are a part of the natural cycle and rejuvenate the soil, kill pests and lead to new growth, uncontrolled fires also cause significant detrimental impacts, such as (i) economic damage due to loss of mature trees; (ii) increase the CO2 loading into the atmosphere; (iii) air quality deterioration during and immediately after the fires; and (iv) loss of human life and property. Thus, the development of an efficient forest fire occurrence and management system is crucial to offset such adverse impacts. This proposed research program aims to use remote sensing data (in the form of digital imagery) acquired by various satellite platforms that gather information over large geographic areas to help prevent the devastation of uncontrolled fires. The long-term goal/vision of this program is to develop a robust operational forest fire occurrence prediction and management system primarily using remote sensing but supported by other ancillary data. The foremost elements of the proposed research are to (i)predict forest fire danger conditions using the relationships of river flow regimes and soil moisture, integrating this data in the framework of our recently developed remote sensing-based forest fire danger forecasting system; (ii)determine trends in the occurrences of historical forest fires and their relationships to large-scale atmospheric circulations and climate variables; (iii) estimate CO2 emissions from forest fires using space-borne platforms; and (iv) develop fuel management strategies to reduce fire severity by using the outcomes of (i) and remote sensing-derived leaf area index data, a measurement of forest canopy. The successful completion of the proposed research program will result in a prototype forest fire occurrence management system. It will be ground-breaking in forest fire management; in sustainability and economics of forest resources; and in guiding research and codes in handling fire instances. Furthermore, remote sensing-based quick and reliable estimation of CO2 emissions from the forest fires will help policy makers understand the amount of non-anthropogenic CO2 entering the atmosphere. Such knowledge will be highly impactful in advancing Canada's annual greenhouse gas inventory as well as the Pan-Canadian Framework on Clean Growth and Climate Change to achieve "A Healthy Environment and a Healthy Economy." Additionally, the proposed research program will train four highly qualified professionals (HQPs) with unique, market-ready skills in the broader field of remote sensing, natural hazard and resource management needed for sustainable growth and further development of the Canadian economy.
在过去的25年里,加拿大平均每年发生7300起火灾,每年约有250万公顷的森林被毁。仅在过去十年中,加拿大人每年就花费8亿至15亿加元用于灭火。虽然火灾是自然循环的一部分,可以使土壤恢复活力,杀死害虫并导致新的生长,但不受控制的火灾也会造成重大的有害影响,例如(i)由于成熟树木的损失而造成的经济损失;(ii)增加大气中的CO2负荷;(iii)火灾期间和之后的空气质量恶化;以及(iv)人类生命和财产的损失。因此,建立一个有效的森林火灾发生和管理系统对于抵消这种不利影响至关重要。这项拟议的研究计划旨在利用各种卫星平台获取的遥感数据(以数字图像的形式),这些卫星平台收集了大面积地理区域的信息,以帮助防止失控火灾的破坏。该方案的长期目标/愿景是开发一个主要使用遥感但由其他辅助数据支持的强大的森林火灾发生预测和管理系统。拟议研究的主要内容是:㈠利用河流流量和土壤湿度之间的关系预测森林火灾危险状况,将这些数据纳入我们最近开发的基于遥感的森林火灾危险预报系统的框架; ㈡确定历史上森林火灾发生的趋势及其与大规模大气环流和气候变量的关系;利用空间平台估计森林火灾的二氧化碳排放量;以及利用(i)的结果和遥感得出的叶面积指数数据(森林冠层的一种测量方法)制定燃料管理战略,以降低火灾的严重程度。成功完成拟议的研究计划将导致一个原型森林火灾发生管理系统。它将在森林火灾管理、森林资源的可持续性和经济性以及指导火灾处理研究和规范方面具有开创性意义。此外,基于遥感的森林火灾二氧化碳排放量的快速和可靠的估计将有助于决策者了解非人为二氧化碳进入大气层的数量。这些知识将对推动加拿大的年度温室气体清单以及泛加拿大清洁增长和气候变化框架产生重大影响,以实现“健康的环境和健康的经济”。“此外,拟议的研究计划将培养四名高素质的专业人员(HQP),他们在可持续增长和加拿大经济进一步发展所需的遥感,自然灾害和资源管理等更广泛领域具有独特的市场准备技能。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hassan, Quazi其他文献

Hassan, Quazi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hassan, Quazi', 18)}}的其他基金

Use of Remote Sensing in Developing a Forest Fire Occurrence Management System
利用遥感开发森林火灾发生管理系统
  • 批准号:
    RGPIN-2016-03841
  • 财政年份:
    2021
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Use of Remote Sensing in Developing a Forest Fire Occurrence Management System
利用遥感开发森林火灾发生管理系统
  • 批准号:
    RGPIN-2016-03841
  • 财政年份:
    2020
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Use of Remote Sensing in Developing a Forest Fire Occurrence Management System
利用遥感开发森林火灾发生管理系统
  • 批准号:
    RGPIN-2016-03841
  • 财政年份:
    2019
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Use of Remote Sensing in Developing a Forest Fire Occurrence Management System
利用遥感开发森林火灾发生管理系统
  • 批准号:
    RGPIN-2016-03841
  • 财政年份:
    2018
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Use of Remote Sensing in Developing a Forest Fire Occurrence Management System
利用遥感开发森林火灾发生管理系统
  • 批准号:
    RGPIN-2016-03841
  • 财政年份:
    2017
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Use of Remote Sensing in Developing a Forest Fire Occurrence Management System
利用遥感开发森林火灾发生管理系统
  • 批准号:
    RGPIN-2016-03841
  • 财政年份:
    2016
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

病原菌群体感应监管(policing quorum sensing)的生理生态机理及分子调控机制
  • 批准号:
    31570490
  • 批准年份:
    2015
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
基于Compressive sensing理论的单探测器太赫兹成像技术
  • 批准号:
    60977009
  • 批准年份:
    2009
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目
水稻OsCAS(Calcium-sensing Receptor)基因的功能分析
  • 批准号:
    30900771
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
Compressive Sensing 理论及信号最佳稀疏分解方法研究
  • 批准号:
    60776795
  • 批准年份:
    2007
  • 资助金额:
    28.0 万元
  • 项目类别:
    联合基金项目
生防假单胞菌群体感应(quorum-sensing)系统的鉴定和功能分析
  • 批准号:
    30370952
  • 批准年份:
    2003
  • 资助金额:
    21.0 万元
  • 项目类别:
    面上项目

相似海外基金

Movie-based wavefront control of multi-aperture optics for high-resolution remote sensing
用于高分辨率遥感的多孔径光学器件的基于电影的波前控制
  • 批准号:
    23K13346
  • 财政年份:
    2023
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Laser-induced graphene composites-based standalone stretchable sweat sensing system for remote health monitoring
基于激光诱导石墨烯复合材料的独立可拉伸汗液传感系统,用于远程健康监测
  • 批准号:
    2309323
  • 财政年份:
    2023
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Standard Grant
AI-Based Crop Detection using Spectral Remote Sensing Images
使用光谱遥感图像进行基于人工智能的作物检测
  • 批准号:
    2865071
  • 财政年份:
    2023
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Studentship
Multi-task learning based post-disaster mapping via multi-modal remote sensing observations
基于多任务学习的多模态遥感观测灾后测绘
  • 批准号:
    23K13419
  • 财政年份:
    2023
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
EAGER: Using machine learning to develop a calibrated, remote sensing-based age model to improve late Quaternary slip-rate estimates in arid environments
EAGER:利用机器学习开发基于遥感的校准年龄模型,以改善干旱环境中第四纪晚期滑移率的估计
  • 批准号:
    2233310
  • 财政年份:
    2022
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Standard Grant
Enhancement of Multi-Constellation Satellite-Based Precise Positioning and Ionospheric Remote Sensing
多星座卫星精密定位与电离层遥感增强
  • 批准号:
    RGPIN-2019-05110
  • 财政年份:
    2022
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
EAGER: Using machine learning to develop a calibrated, remote sensing-based age model to improve late Quaternary slip-rate estimates in arid environments
EAGER:利用机器学习开发基于遥感的校准年龄模型,以改善干旱环境中第四纪晚期滑移率的估计
  • 批准号:
    2210203
  • 财政年份:
    2022
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Standard Grant
Remote Sensing Based Approaches to Enable Process-based Glacier Studies in Canada
基于遥感的方法使加拿大能够进行基于过程的冰川研究
  • 批准号:
    RGPIN-2021-02443
  • 财政年份:
    2022
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
REU Site: Research Experiences for Undergraduates in Satellite and Ground-Based Remote Sensing at NOAA-CESSRST--Enhanced Engagement
REU 网站:NOAA-CESSRST 卫星和地基遥感本科生的研究经验——增强参与
  • 批准号:
    2150432
  • 财政年份:
    2022
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Standard Grant
Developing Game Engine Based Simulation Tools and Utilizing Remote Sensing Monitoring for an Improvement on Rockfall Hazard Analysis
开发基于游戏引擎的模拟工具并利用遥感监测改进落石灾害分析
  • 批准号:
    546935-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了