Models and Plan Recognition Algorithms for Assistant Agents

助理智能体的模型和计划识别算法

基本信息

  • 批准号:
    RGPIN-2022-05123
  • 负责人:
  • 金额:
    $ 1.75万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

This research program aims to develop new models and algorithms to improve state-of-the-art methods in plan recognition. Plan recognition is an Artificial Intelligence (AI) capability, which is the is the opposite of planning. Automated planning is the capability of generating plans (e.g. sequences of action), which enables intelligent systems to make complex decisions to achieve their goals autonomously. Plan recognition is the opposite. The system observes the actions of an agent (e.h., a person), using sensors (e.g., a camera). From the observed sequence of actions, a plan recognition algorithm attempts to deduce what the agent's plan, goal, or even intentions are. This is an essential capability for intelligent systems that interact with other agents (humans or not). Plan recognition has many fields of application : robotics, smart homes (helping residents), video games (detecting player intentions), cybersecurity (countering hackers), defence (anticipating threats from the enemy), etc. The research focus of this program is specially motivated by cognitive assistance robots. The long-term goal is to design assistant robots that can help elderly people in their activities of daily living (ADL) at home, much like a human caregiver. To achieve this goal, many AI challenges must be addressed. The long-term objective of the program is to design new and more efficient techniques and algorithms of plan recognition for assistant robots. This program has three short-term objectives. The first objective is to improve the temporal reasoning capabilities of plan recognition methods. We propose to resolve many ambiguities by considering the duration of the actions and when they are executed using stochastic models. The second objective aims to unify plan recognition with two other capabilities, namely motion planning and object recognition (image classification). Instead of considering these capabilities independently and a passive plan recognition process, we will unify these capabilities to better position the robot to maximize its observations. Finally, the third objective aims to reduce the amount of required knowledge of plan libraries-based methods. We will develop methods to automatically refine plans by learning the habits of the observed agents. This program has a high impact potential. It targets fundamental advances in plan recognition motivated by concrete needs of real applications. In practice, this will improve the abilities of assistant robots. Canada faces a major aging of its population which puts pressure on public services, including health. The cost of these services is increasing and we face a serious labour shortage. Technological solutions, such as robot assistants, will help to overcome demographic challenges. Helping older people live longer at home also improves their quality of life.
该研究计划旨在开发新的模型和算法,以改善计划识别中的最先进方法。计划识别是一种人工智能(AI)能力,与计划相反。自动规划是生成计划(例如行动序列)的能力,它使智能系统能够做出复杂的决策以自主实现其目标。计划识别则相反。系统观察代理的动作(例如,人),使用传感器(例如,照相机)。根据观察到的动作序列,计划识别算法试图推断代理的计划,目标甚至意图是什么。这是与其他代理(人类或非人类)交互的智能系统的基本能力。计划识别有许多应用领域:机器人,智能家居(帮助居民),视频游戏(检测玩家意图),网络安全(对抗黑客),防御(预测来自敌人的威胁)等。长期目标是设计能够帮助老年人在家中进行日常生活活动(ADL)的辅助机器人,就像人类护理人员一样。为了实现这一目标,必须解决许多人工智能挑战。该计划的长期目标是设计新的,更有效的技术和算法的计划识别的助理机器人。该计划有三个短期目标。第一个目标是提高计划识别方法的时间推理能力。我们建议通过考虑行动的持续时间以及何时使用随机模型执行来解决许多模糊性。第二个目标旨在将计划识别与其他两个功能统一起来,即运动规划和对象识别(图像分类)。我们将统一这些功能,以更好地定位机器人,从而最大限度地提高其观测能力,而不是单独考虑这些功能和被动的计划识别过程。最后,第三个目标旨在减少基于计划库的方法所需的知识量。我们将开发通过学习被观察代理的习惯来自动改进计划的方法。该计划具有很高的影响潜力。它的目标是由真实的应用程序的具体需求所激励的计划识别的根本性进步。在实践中,这将提高助理机器人的能力。加拿大面临着人口老龄化的严重问题,这给包括卫生在内的公共服务带来了压力。这些服务的成本正在增加,我们面临着严重的劳动力短缺。机器人助手等技术解决方案将有助于克服人口挑战。帮助老年人在家里活得更长也能提高他们的生活质量。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Beaudry, Éric其他文献

Beaudry, Éric的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Advanced Algorithms for Plan Recognition
先进的计划识别算法
  • 批准号:
    RGPIN-2017-06350
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced Algorithms for Plan Recognition
先进的计划识别算法
  • 批准号:
    RGPIN-2017-06350
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced Algorithms for Plan Recognition
先进的计划识别算法
  • 批准号:
    RGPIN-2017-06350
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
A geographical study on the recognition to the Location Normalization Plan from local municipalities
地方市政府对区位标准化计划认可度的地理研究
  • 批准号:
    20K01165
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Advanced Algorithms for Plan Recognition
先进的计划识别算法
  • 批准号:
    RGPIN-2017-06350
  • 财政年份:
    2019
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced Algorithms for Plan Recognition
先进的计划识别算法
  • 批准号:
    RGPIN-2017-06350
  • 财政年份:
    2018
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced Algorithms for Plan Recognition
先进的计划识别算法
  • 批准号:
    RGPIN-2017-06350
  • 财政年份:
    2017
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
EAPSI: Identifying Relations between Computer-Generated and Manually Annotated Interpretations of Activities for Planning and Plan Recognition Tasks
EAPSI:识别计算机生成的和手动注释的规划和计划识别任务活动解释之间的关系
  • 批准号:
    1515258
  • 财政年份:
    2015
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Fellowship Award
User feedback during plan recognition with applications to interface design and intelligent agents
使用界面设计和智能代理的应用程序识别计划期间的用户反馈
  • 批准号:
    880-1997
  • 财政年份:
    2000
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
User feedback during plan recognition with applications to interface design and intelligent agents
使用界面设计和智能代理的应用程序识别计划期间的用户反馈
  • 批准号:
    880-1997
  • 财政年份:
    1999
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了