Drivers' cognitive load detection through ocular metrics classification for the development on Driver Monitoring Systems
通过视觉指标分类检测驾驶员的认知负荷,以开发驾驶员监控系统
基本信息
- 批准号:RGPIN-2022-03490
- 负责人:
- 金额:$ 2.62万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Vehicle automation can make roads safer by reducing the number of collisions attributed to human factors like distraction. However, despite the technological advancements observed over the last decade, vehicles requiring absolutely no input from the human driver have not yet reached widespread adoption. Available vehicle automation (Society of Automotive Engineers (SAE) level-2 and 3 systems; L2/L3) still requires the human to stay engaged in the overall task of driving either to maintain safe vehicle operations or to take over control whenever necessary. To ensure that these requirements are met, Driver Monitoring Systems (DMS) are being developed with the overarching goal of monitoring the state of the human driver. Relating to the potential for DMS to improve road safety, there remains the question of how accurately these systems can monitor the driver's cognitive load during L2/L3 driving and detect the onset of dangerous conditions like distraction. Thus, this research aims to develop more accurate DMS that are capable of detecting changes in drivers' cognitive load during L2/L3 driving. The research is articulated in three distinct objectives. Objective 1 will adopt ground-truth measures to test the accuracy of non-intrusive ocular metrics (pupil size, gaze concentration, blink rate) in detecting driver's cognitive load. Objective 2 will use ocular metrics to monitor changes in driver's cognitive load during simulated and on-road L2/L3 driving. Objective 3 will develop and test the accuracy of classification models in distinguishing between diverse levels of cognitive load (low to high) during L2/L3 driving. The impact of this project is twofold. DMS development. The applicant has existing collaborations with automotive suppliers (Dreyev, Faurecia) which are involved in the development of DMS. Data collected in this project will be used as a benchmark to help industry partners test the reliability of their DMS solutions. Classification models adopting diverse combinations of ocular metrics will also inform the development of more accurate cognitive load detection systems. L2/L3 policy development. The applicant is an active participant in industry organizations in the area of autonomous vehicles (ISO/Transport Canada, SAE) and has an active collaboration with the Ontario Ministry of Transportation. Project findings will be leveraged to inform the development of road safety policies for the safe adoption of L2/L3 automated driving systems. The development of new policies and accurate DMS will lead to safer vehicles and streets for all Canadians. The HQP trained in this research program will have highly sought-after skills and be able to contribute to this fast-paced emerging sector whether in academia, government, or industry.
车辆自动化可以通过减少因分心等人为因素造成的碰撞次数来使道路更安全。然而,尽管在过去十年中观察到了技术进步,但完全不需要人类驾驶员输入的车辆尚未得到广泛采用。现有的车辆自动化(汽车工程师协会(SAE)2级和3级系统; L2/L3)仍然需要人类参与驾驶的整体任务,以保持安全的车辆操作或在必要时接管控制。为了确保满足这些要求,正在开发驾驶员监控系统(DMS),其总体目标是监控人类驾驶员的状态。关于DMS改善道路安全的潜力,仍然存在一个问题,即这些系统在L2/L3驾驶期间如何准确地监测驾驶员的认知负荷,并检测分心等危险情况的发生。因此,本研究旨在开发更准确的DMS,能够检测驾驶员在L2/L3驾驶过程中认知负荷的变化。这项研究有三个不同的目标。目标1将采用地面实况测量来测试非侵入性视觉指标(瞳孔大小、注视集中度、眨眼率)在检测驾驶员认知负荷方面的准确性。目标2将使用视觉指标来监测模拟和道路L2/L3驾驶期间驾驶员认知负荷的变化。目标3将开发和测试分类模型在区分L2/L3驾驶过程中不同认知负荷水平(从低到高)方面的准确性。该项目的影响是双重的。DMS开发。申请人与参与DMS开发的汽车供应商(Dreyev、Faurecia)有合作关系。本项目收集的数据将用作基准,帮助行业合作伙伴测试其DMS解决方案的可靠性。采用不同组合的视觉指标的分类模型也将告知更准确的认知负荷检测系统的开发。L2/L3政策制定。申请人是自动驾驶汽车领域行业组织(ISO/加拿大交通部,SAE)的积极参与者,并与安大略交通部积极合作。该项目的研究结果将用于制定道路安全政策,以安全采用L2/L3自动驾驶系统。新政策的制定和准确的DMS将为所有加拿大人带来更安全的车辆和街道。在这个研究项目中培训的HQP将拥有非常抢手的技能,并能够为这个快节奏的新兴行业做出贡献,无论是在学术界,政府还是工业界。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Biondi, Francesco其他文献
The comparison of auditory, tactile, and multimodal warnings for the effective communication of unexpected events during an automated driving scenario
- DOI:
10.1016/j.trf.2019.06.011 - 发表时间:
2019-08-01 - 期刊:
- 影响因子:4.1
- 作者:
Geitner, Claudia;Biondi, Francesco;Birrell, Stewart - 通讯作者:
Birrell, Stewart
Advanced driver assistance systems: Using multimodal redundant warnings to enhance road safety
- DOI:
10.1016/j.apergo.2016.06.016 - 发表时间:
2017-01-01 - 期刊:
- 影响因子:3.2
- 作者:
Biondi, Francesco;Strayer, David L.;Mulatti, Claudio - 通讯作者:
Mulatti, Claudio
Beeping ADAS: Reflexive effect on drivers' behavior
- DOI:
10.1016/j.trf.2014.04.020 - 发表时间:
2014-07-01 - 期刊:
- 影响因子:4.1
- 作者:
Biondi, Francesco;Rossi, Riccardo;Mulatti, Claudio - 通讯作者:
Mulatti, Claudio
Biondi, Francesco的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Biondi, Francesco', 18)}}的其他基金
Drivers' cognitive load detection through ocular metrics classification for the development on Driver Monitoring Systems
通过视觉指标分类检测驾驶员的认知负荷,以开发驾驶员监控系统
- 批准号:
DGECR-2022-00477 - 财政年份:2022
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Launch Supplement
相似国自然基金
外周犬尿氨酸通过脑膜免疫致海马BDNF水平降低介导术后认知功能障碍
- 批准号:82371193
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
海马神经元胆固醇代谢重编程致染色质组蛋白乙酰化水平降低介导老年小鼠术后认知功能障碍
- 批准号:82371192
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
LTB4/BLT1轴调控NLRP3炎症小体对糖尿病认知功能障碍的作用研究
- 批准号:82371213
- 批准年份:2023
- 资助金额:47.00 万元
- 项目类别:面上项目
年龄和手术应激强度在术后远期认知功能障碍发生中的作用与机制研究
- 批准号:81141066
- 批准年份:2011
- 资助金额:10.0 万元
- 项目类别:专项基金项目
面向认知网络的自律计算模型及评价方法研究
- 批准号:60973027
- 批准年份:2009
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
Development of a Novel EMG-Based Neural Interface for Control of Transradial Prostheses with Gripping Assistance
开发一种新型的基于肌电图的神经接口,用于通过抓取辅助控制经桡动脉假体
- 批准号:
10748341 - 财政年份:2024
- 资助金额:
$ 2.62万 - 项目类别:
Predicting language under difficult conditions: Effects of cognitive load, noise, and hearing impairment
在困难条件下预测语言:认知负荷、噪音和听力障碍的影响
- 批准号:
ES/X001148/1 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Research Grant
Strategies to Achieve Viral Suppression for Youth with HIV (The SAVVY Study)
青少年艾滋病病毒感染者实现病毒抑制的策略(SAVVY 研究)
- 批准号:
10762109 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Human brain multi-omics to decipher major depression pathophysiology
人脑多组学破译重度抑郁症病理生理学
- 批准号:
10715962 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
The Role of Viral Exposure and Age in Alzheimer's Disease Progression
病毒暴露和年龄在阿尔茨海默病进展中的作用
- 批准号:
10717223 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Mucosal immunity to sapovirus in early childhood
幼儿期对沙波病毒的粘膜免疫
- 批准号:
10677051 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Helping Doctors Doctor: Using AI to Automate Documentation and "De-Autonomate" Health Care
帮助医生医生:使用人工智能实现文档自动化和医疗保健“去自动化”
- 批准号:
10701364 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Neuroprotective Potential of Vaccination Against SARS-CoV-2 in Nonhuman Primates
SARS-CoV-2 疫苗对非人灵长类动物的神经保护潜力
- 批准号:
10646617 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Elucidating single cell changes in neurogenic brain regions during HIV and cannabinoid exposure
阐明艾滋病毒和大麻素暴露期间神经源性大脑区域的单细胞变化
- 批准号:
10686685 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Deep Learning Assisted Scoring of Point of Care Lung Ultrasound for Acute Decompensated Heart Failure in the Emergency Department
深度学习辅助急诊室急性失代偿性心力衰竭护理点肺部超声评分
- 批准号:
10741596 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别: