Helping Doctors Doctor: Using AI to Automate Documentation and "De-Autonomate" Health Care
帮助医生医生:使用人工智能实现文档自动化和医疗保健“去自动化”
基本信息
- 批准号:10701364
- 负责人:
- 金额:$ 113.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-30 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:AlgorithmsAreaCharacteristicsClinicalCommunicationComputer Vision SystemsComputersConsumptionCountryDataData AnalyticsDecision MakingDiagnosisDocumentationElectronic Health RecordEngineeringGenerationsGenetic TranscriptionGoalsHealthcareHourImageInvestigationLabelLearningLengthMachine LearningManualsMedicalMethodsNamesNatural Language ProcessingOccupationsPatientsPatternPhysiciansProcessQuality of CareScientistSourceSystemTechniquesTechnologyTestingTimeUser-Computer InterfaceWorkburnoutclinical encountercognitive loadcomputer sciencecostdata streamsdeep learningdesignimplicit biasimprovedlearning strategymultidisciplinarynovelpediatricianskillssupervised learningunsupervised learning
项目摘要
Johnson, Kevin DP1 Details
Project Name: Helping Doctors Doctor: Using AI to Automate Documentation and “De-Autonomate” Health
Care
Project Summary
Clinical encounter documentation is one of the most time-consuming tasks of the ambulatory encounter,
taking approximately two hours for every hour spent with patients. Clinical note lengths in the US are longer
than those in other countries due to requirements to justify billing and complete quality care metrics. Not
surprisingly, clinical encounter documentation has become a major source of clinician burnout over the past
two decades. Although companies are selling technologies to transcribe what was discussed during the
encounter, these costly solutions reproduce what is already suboptimal about how we create and use EHR
information. There is a desperate need to reimagine the process of documenting as well as the content of
documenting a clinical encounter. In this application I propose to develop a new generation of automated
documentation algorithms—algorithms that can listen to the dialog between a patient and clinician, collect
quantitative data about these observations, combine those with existing electronic health record (EHR) data
and create relevant encounter summary information. These documentation algorithms will leverage the
remarkable progress we have made in computer vision, natural language processing, machine learning to
support image labeling, and other advances using EHR data. These novel computational approaches have yet
to be explored as alternative approaches to summarizing medical data collected in real time. As a pediatrician
and biomedical informatician who has acquired considerable expertise in real-world systems design,
implementation and medical data analytics, this project leverages many of my skills, though it is a departure
from my previous human-computer interface work. Rather, the goal of this project is to remove the burden of
documentation from clinicians to the extent possible. To achieve this goal, I will work with a multidisciplinary
group of collaborators, including computer scientists, technology engineers, and clinical domain experts.
Specifically, I will: (1) collect and analyze exam room video and annotations of the encounters to identify
salient characteristics of patients and their interaction with the clinician that led to specific diagnoses; (2)
apply natural language processing, deep learning, and computer vision methods to learn and characterize
patterns from vast streams of data using supervised and unsupervised learning methods. Combining these
techniques to directly impact what is documented and how it is generated is a new area of investigation for
me and an approach that promises to support innumerable other projects including identifying implicit bias in
clinical encounters, enabling a new class of real-time decision making and improving the usefulness of
encounter summaries.
约翰逊,凯文DP 1详情
项目名称:帮助医生医生:使用AI自动化文档和“去自主化”健康
护理
项目摘要
临床就诊记录是门诊就诊中最耗时的任务之一,
每花一个小时在病人身上大约花两个小时。美国的临床记录长度更长
由于需要证明计费和完整的质量护理指标,不
令人惊讶的是,在过去,临床诊疗记录已经成为临床医生倦怠的主要来源
二十年尽管公司正在出售技术,以转录会议期间讨论的内容,
这些昂贵的解决方案重现了我们如何创建和使用EHR的次优方案
信息.迫切需要重新设想记录的过程以及记录的内容。
记录一次临床遭遇在这个应用程序中,我建议开发新一代的自动化
文档算法-可以收听患者和临床医生之间的对话,收集
关于这些观察结果的定量数据,联合收割机将这些数据与现有的电子健康记录(EHR)数据相结合
并创建相关的遭遇摘要信息。这些文档算法将利用
我们在计算机视觉,自然语言处理,机器学习,
支持图像标记,以及使用EHR数据的其他进步。这些新的计算方法还没有
作为总结真实的时间收集的医疗数据的替代方法进行探索。作为一名儿科医生
和生物医学信息学家谁已经获得了相当多的专业知识,在现实世界的系统设计,
实施和医疗数据分析,这个项目利用了我的许多技能,虽然它是一个出发点,
从我以前的人机界面工作中。相反,该项目的目标是消除
尽可能从临床医生处获取文件。为了实现这一目标,我将与多学科合作,
一组合作者,包括计算机科学家、技术工程师和临床领域专家。
具体来说,我将:(1)收集和分析考场录像和注释的遭遇,以确定
患者的显著特征及其与临床医生的互动导致特定诊断;(2)
应用自然语言处理、深度学习和计算机视觉方法来学习和表征
使用监督和无监督学习方法从大量数据流中提取模式。组合这些
直接影响记录内容及其生成方式的技术是一个新的研究领域,
我和一种承诺支持无数其他项目的方法,包括识别
临床遭遇,使一类新的实时决策和提高的有用性,
遭遇摘要
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KEVIN B. JOHNSON其他文献
KEVIN B. JOHNSON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KEVIN B. JOHNSON', 18)}}的其他基金
My MediHealth: A Paradigm for Children-centered Medication Management
My MediHealth:以儿童为中心的药物管理范例
- 批准号:
8111674 - 财政年份:2009
- 资助金额:
$ 113.75万 - 项目类别:
My MediHealth: A Paradigm for Children-centered Medication Management
My MediHealth:以儿童为中心的药物管理范例
- 批准号:
7940992 - 财政年份:2009
- 资助金额:
$ 113.75万 - 项目类别:
STEPStools: Developing Web Services for Safe Pediatric Dosing
STEPStools:开发用于安全儿科给药的 Web 服务
- 批准号:
7669198 - 财政年份:2007
- 资助金额:
$ 113.75万 - 项目类别:
STEPStools: Developing Web Services for Safe Pediatric Dosing
STEPStools:开发用于安全儿科给药的 Web 服务
- 批准号:
7360166 - 财政年份:2007
- 资助金额:
$ 113.75万 - 项目类别:
STEPStools: Developing Web Services for Safe Pediatric Dosing
STEPStools:开发用于安全儿科给药的 Web 服务
- 批准号:
7496976 - 财政年份:2007
- 资助金额:
$ 113.75万 - 项目类别:
Show Your Work: Do Prescripition Annotations Impact Near Miss Medication Errors?
展示您的作品:处方注释会影响未遂用药错误吗?
- 批准号:
7106089 - 财政年份:2006
- 资助金额:
$ 113.75万 - 项目类别:
Electronic Prescribing--Medication Errors in Pediatrics
电子处方——儿科用药错误
- 批准号:
6528343 - 财政年份:2001
- 资助金额:
$ 113.75万 - 项目类别:
Electronic Prescribing--Medication Errors in Pediatrics
电子处方——儿科用药错误
- 批准号:
6658032 - 财政年份:2001
- 资助金额:
$ 113.75万 - 项目类别:
Impact of Electronic Prescribing on Medication Errors A*
电子处方对用药错误的影响 A*
- 批准号:
6448827 - 财政年份:2001
- 资助金额:
$ 113.75万 - 项目类别:
COMPUTER BASED DOCUMENTATION AND PROVIDER INTERACTION
基于计算机的文档和提供商交互
- 批准号:
6054398 - 财政年份:1999
- 资助金额:
$ 113.75万 - 项目类别:
相似国自然基金
层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
- 批准号:2021JJ40433
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
- 批准号:32001603
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
AREA国际经济模型的移植.改进和应用
- 批准号:18870435
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Research on the geological conditions based on stratigraphy and sedimentary facies and related ground motion characteristics in the Tokyo metropolitan area
东京都地区地层沉积相地质条件及相关地震动特征研究
- 批准号:
20K04094 - 财政年份:2020
- 资助金额:
$ 113.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Housing supply and residents' characteristics in the suburban area of Yangon
仰光郊区住房供应及居民特征
- 批准号:
19K01181 - 财政年份:2019
- 资助金额:
$ 113.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Characteristics of particle components from vehicle emissions in a suburban residential area
郊区住宅区汽车尾气颗粒物成分特征
- 批准号:
18K18209 - 财政年份:2018
- 资助金额:
$ 113.75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Evaluation study of medical resources based on the epidemiological characteristics of stroke in the specific area
基于特定地区脑卒中流行病学特征的医疗资源评价研究
- 批准号:
17K09210 - 财政年份:2017
- 资助金额:
$ 113.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Elucidation of the synaptic characteristics of the medial preoptic area-ventral tegmental neural circuit
内侧视前区-腹侧被盖神经回路突触特征的阐明
- 批准号:
16K19747 - 财政年份:2016
- 资助金额:
$ 113.75万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
A Proposal of Green Space Evaluation Index Focused on Regional Characteristics of CO2 Concentration in Human Living Area
关注人类居住区CO2浓度区域特征的绿地评价指标建议
- 批准号:
16K06528 - 财政年份:2016
- 资助金额:
$ 113.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
analysis and modeling of the characteristics of spreading parameter of directional wave spectrum around the coastal area of Japan
日本沿海定向波谱传播参数特征分析与建模
- 批准号:
15K06237 - 财政年份:2015
- 资助金额:
$ 113.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A study on applicability evaluation method between tourism destination and tourists characteristics in Sanriku area
三陆地区旅游目的地与游客特征适用性评价方法研究
- 批准号:
15K01950 - 财政年份:2015
- 资助金额:
$ 113.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A study of spatial characteristics of elderly people returning driving licenses and they shaping area of daily activity in JAPAN
日本老年人返还驾驶执照的空间特征及其塑造日常活动区域的研究
- 批准号:
15K21589 - 财政年份:2015
- 资助金额:
$ 113.75万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
A study on "Tokunoka" : Inter-area comparison of their characteristics and social roles
“德之香”研究:其特征和社会角色的地区间比较
- 批准号:
15K12793 - 财政年份:2015
- 资助金额:
$ 113.75万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research