Methods to improve the use of wearable sensors in human movement analyses.

改进可穿戴传感器在人体运动分析中的使用的方法。

基本信息

  • 批准号:
    RGPIN-2020-06338
  • 负责人:
  • 金额:
    $ 1.75万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Gait analysis research is important for analysing sport performance, pathological gait, or the effects of aging. Unfortunately, conventional optical gait analysis systems are expensive, time-consuming, and confined to laboratories, which limits their accessibility and practical application. Wearable sensors offer a cost-effective alternative to conventional systems, with the unique ability to collect data in real-world conditions. While this may be the new frontier of biomechanics research, wearable sensors have generally failed to realize their potential for gait analyses in real-world, uncontrolled settings. This disconnect between what wearable sensors are capable of and what they are currently used for is largely based on the difficulty in processing and managing the large amounts of data collected. Therefore, if wearable sensors are to fulfill their real-world potential, there is a critical need to address these foundational methodological gaps across the scientific and biomechanics community. The long-term vision of my research program is to provide the biomechanics community with new tools to help make human movement analyses more accessible. Wearable sensors provide a clear opportunity to support this vision, but there is an immediate need to improve the ways in which these data are collected, processed, interpreted, and visualized. Therefore, the short-term goals of this research will focus on i) improving activity classification and event detection algorithms for wearable sensor data, ii) developing robust wearable sensor processing pipelines, iii) evaluating the sensitivity to change in uncontrolled, real-world gait patterns, and iv) developing new wearable sensor data visualization techniques. Building on my past successes in the areas of wearable sensors and machine learning in human movement analyses, this research will make the collection of wearable sensor data in real-world, uncontrolled settings more efficient, more effective, and more interpretable. Therefore, this foundational work will develop new analytical methods to empower researchers to collect better and more representative human movement data, which will in turn enable better informed decision-making regarding healthy aging and the treatment of musculoskeletal disorders. Moreover, this research will develop my program as a world-leader in this emerging area of wearable technology and human movement, while driving future academic and industry achievements for Canada and my HQP.
步态分析研究对于分析运动表现、病理性步态或衰老的影响具有重要意义。遗憾的是,传统的光学步态分析系统价格昂贵、耗时长,而且局限于实验室,这限制了它们的可及性和实际应用。可穿戴传感器为传统系统提供了一种经济高效的替代方案,具有在现实世界条件下收集数据的独特能力。虽然这可能是生物力学研究的新前沿,但可穿戴传感器通常未能实现其在真实世界、不受控制的环境中进行步态分析的潜力。可穿戴传感器的能力与它们目前的用途之间的脱节,很大程度上是因为处理和管理收集的大量数据存在困难。因此,如果可穿戴传感器要发挥其在现实世界中的潜力,就迫切需要解决科学界和生物力学界的这些基本方法学差距。我的研究计划的长期愿景是为生物力学社区提供新的工具,帮助他们更容易地进行人体运动分析。可穿戴传感器为支持这一愿景提供了一个明确的机会,但迫切需要改进收集、处理、解释和可视化这些数据的方式。因此,这项研究的短期目标将集中在i)改进可穿戴传感器数据的活动分类和事件检测算法,ii)开发健壮的可穿戴传感器处理流水线,iii)评估在不受控制的真实世界步态模式中对变化的敏感性,以及iv)开发新的可穿戴传感器数据可视化技术。基于我过去在人体运动分析中可穿戴传感器和机器学习领域的成功,这项研究将使在真实世界、非受控环境中收集可穿戴传感器数据的工作更有效率、更有效、更容易理解。因此,这项基础性工作将开发新的分析方法,使研究人员能够收集更好和更具代表性的人体运动数据,这反过来将使他们能够更明智地做出关于健康老龄化和肌肉骨骼疾病治疗的决策。此外,这项研究将使我的项目成为可穿戴技术和人体运动这一新兴领域的世界领先者,同时推动加拿大和我的HQP未来的学术和行业成就。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kobsar, Dylan其他文献

Mechanisms hypothesized for pain-relieving effects of exercise in fibromyalgia: a scoping review.
  • DOI:
    10.1177/1759720x231182894
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Neelapala, Yuva Venkata Raghava;Mercuri, Domenico;Macedo, Luciana;Hanna, Steven;Kobsar, Dylan;Carlesso, Lisa
  • 通讯作者:
    Carlesso, Lisa
Wearable sensors to predict improvement following an exercise intervention in patients with knee osteoarthritis
Determination of patellofemoral pain sub-groups and development of a method for predicting treatment outcome using running gait kinematics
  • DOI:
    10.1016/j.clinbiomech.2016.08.003
  • 发表时间:
    2016-10-01
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Watari, Ricky;Kobsar, Dylan;Ferber, Reed
  • 通讯作者:
    Ferber, Reed
Sex differences in the regularity and symmetry of gait in older adults with and without knee osteoarthritis
  • DOI:
    10.1016/j.gaitpost.2022.04.023
  • 发表时间:
    2022-05-04
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Kobsar, Dylan;Barden, John M.;Ferber, Reed
  • 通讯作者:
    Ferber, Reed
Symptomatic knee osteoarthritis is associated with worse but stable quality of life and physical function regardless of the compartmental involvement: Data from the OAI.
  • DOI:
    10.1016/j.ocarto.2020.100117
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Charlton, Jesse M;Esculier, Jean-Francois;Kobsar, Dylan;Thatcher, Daniel;Hunt, Michael A
  • 通讯作者:
    Hunt, Michael A

Kobsar, Dylan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kobsar, Dylan', 18)}}的其他基金

Methods to improve the use of wearable sensors in human movement analyses.
改进可穿戴传感器在人体运动分析中的使用的方法。
  • 批准号:
    RGPIN-2020-06338
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Methods to improve the use of wearable sensors in human movement analyses.
改进可穿戴传感器在人体运动分析中的使用的方法。
  • 批准号:
    RGPIN-2020-06338
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Methods to improve the use of wearable sensors in human movement analyses.
改进可穿戴传感器在人体运动分析中的使用的方法。
  • 批准号:
    DGECR-2020-00118
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Launch Supplement
Measuring gait variability in older adults using a portable, body-fixed sensor
使用便携式、身体固定传感器测量老年人的步态变异性
  • 批准号:
    401447-2010
  • 财政年份:
    2011
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Industrial Postgraduate Scholarships
Measuring gait variability in older adults using a portable, body-fixed sensor
使用便携式、身体固定传感器测量老年人的步态变异性
  • 批准号:
    401447-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Industrial Postgraduate Scholarships

相似海外基金

Impact of Medicaid Prescription Cap Policies on Treatment Outcomes for Opioid Use Disorder: A National Mixed Methods Study
医疗补助处方上限政策对阿片类药物使用障碍治疗结果的影响:一项国家混合方法研究
  • 批准号:
    10637024
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
Improving Access to Alzheimer's disease and Related Dementias care services for Latinx individuals at Community Health Clinics. A multiphase mixed methods study.
改善社区健康诊所的拉丁裔个人获得阿尔茨海默病和相关痴呆症护理服务的机会。
  • 批准号:
    10624936
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
Investigating Effective Methods that Adults Use to Improve Children's Math Achievement in Informal Learning Environments: A Meta Analysis
调查成人在非正式学习环境中提高儿童数学成绩的有效方法:荟萃分析
  • 批准号:
    2313440
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
A Mixed-Methods investigation of the implications of Substance Use Disorder Stigma for Justice-Involved Youth
混合方法调查药物使用障碍耻辱对参与正义的青少年的影响
  • 批准号:
    10313043
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
Methods to improve the use of wearable sensors in human movement analyses.
改进可穿戴传感器在人体运动分析中的使用的方法。
  • 批准号:
    RGPIN-2020-06338
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Methods to improve the use of wearable sensors in human movement analyses.
改进可穿戴传感器在人体运动分析中的使用的方法。
  • 批准号:
    RGPIN-2020-06338
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Investigating Effective Methods that Adults Use to Improve Children's Math Achievement in Informal Learning Environments: A Meta Analysis
调查成人在非正式学习环境中提高儿童数学成绩的有效方法:荟萃分析
  • 批准号:
    2000292
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
Methods to improve the use of wearable sensors in human movement analyses.
改进可穿戴传感器在人体运动分析中的使用的方法。
  • 批准号:
    DGECR-2020-00118
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Launch Supplement
Research and development of methods to promote qualities and abilities through the use of self-assessment to improve learning and teaching in science education.
研究和开发通过自我评估来提高素质和能力的方法,以改善科学教育中的学习和教学。
  • 批准号:
    20K03269
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Health Reform and Oral Health Disparities: a Mixed Methods Evaluation
医疗改革和口腔健康差异:混合方法评估
  • 批准号:
    10405417
  • 财政年份:
    2018
  • 资助金额:
    $ 1.75万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了