Analysis and Applications of Complex Dynamical Systems

复杂动力系统分析与应用

基本信息

  • 批准号:
    RGPIN-2020-04134
  • 负责人:
  • 金额:
    $ 2.7万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Many complex natural, physical and manmade systems can be investigated mathematically in the framework of interconnected dynamical systems defined on networks. In mathematical terms, a network is a weighted directed graph that consists of a large number of vertices and directed edges among vertices with weights on the edges. On each vertex, a simple dynamical system is defined and the weighted edges encodes interconnections or interactions among the vertex systems. This gives rise to a large-scale complex dynamical system. The long-term objective of PI's research is to develop mathematical theories for the investigation of interconnected dynamical systems on networks and develop effective mathematical tools for the analysis of real-world complex systems. The proposed research consists of two main themes: theoretical development and real-world applications. Theme I: Theoretical development. The first main research problem is to further extend the graph-theoretic approach to the construction of Lyapunov functions for dynamical systems on networks developed by the PI and his graduate students, which has already seen fruitful applications in the analysis of mathematical models in many areas of science and engineering. The main focus is on dynamical systems defined on multigraphs for which the previous theories only had limited success. This development is expected to provide new techniques to resolve many existing open questions on the global stability for complex mathematical models from science and engineering. The second main research problem is to formulate and analyze a new class of state-structured models for the transmission of infectious diseases, both at the population level and within host. Both discrete and continuous state structures will be investigated. The analysis of the resulting models can lead to new understandings of many important infectious diseases including HIV infection, Measles, Tuberculosis, and Yellow fever. Theme II: Real-world applications. Research in this theme focuses on integrating mathematical models and clinical data to investigate significant real-world problems related to infectious diseases. The first main research problem deals with the latent viral reservoirs of HIV infection and the "shock and kill" approach to the elimination of latent reservoirs to achieve a cure of HIV. The research will be built on existing fruitful collaborations with clinical researchers at the University of Alberta Faculty of Medicine on modeling the HIV/SIV infection of brain, a natural reservoir for HIV infection. The second main research problem is to advance the understanding of key differences in immune responses to HIV infection that differentiate elite controllers of HIV infection from typical HIV patients. New classes of within-host mathematical models for the immune responses to the HIV infection will be constructed and calibrated from clinical data. New insights from this research can help HIV vaccine development.
许多复杂的自然、物理和人造系统可以在定义于网络上的相互关联的动力系统的框架内进行数学研究。在数学术语中,网络是一个加权有向图,它由大量顶点和顶点之间的有向边组成,边上有权重。在每个顶点上,定义一个简单的动力系统,加权边编码顶点系统之间的互连或相互作用。这就产生了一个大规模的复杂动力系统。PI研究的长期目标是开发用于网络上互连动力系统研究的数学理论,并开发用于分析现实世界复杂系统的有效数学工具。拟议的研究包括两个主题:理论发展和现实世界的应用。一、理论发展。第一个主要的研究问题是进一步扩展图论的方法来构建由PI和他的研究生开发的网络上的动力系统的李雅普诺夫函数,这已经在许多科学和工程领域的数学模型分析中得到了富有成效的应用。主要的焦点是定义在多重图上的动力系统,以前的理论只取得了有限的成功。这一发展有望为解决科学和工程领域中复杂数学模型的全局稳定性问题提供新的技术。第二个主要的研究问题是制定和分析一类新的状态结构模型的传染病的传播,无论是在人口水平和主机内。离散和连续状态结构将被调查。对所得模型的分析可以导致对许多重要传染病的新理解,包括HIV感染、麻疹、结核病和黄热病。主题二:现实世界的应用。该主题的研究重点是整合数学模型和临床数据,以调查与传染病相关的重大现实问题。第一个主要研究问题涉及HIV感染的潜伏病毒库和消除潜伏病毒库以实现治愈HIV的“休克和杀灭”方法。该研究将建立在与阿尔伯塔大学医学院临床研究人员现有的富有成效的合作基础上,对大脑(艾滋病毒感染的天然储存库)的艾滋病毒/SIV感染进行建模。第二个主要的研究问题是促进对HIV感染免疫反应的关键差异的理解,这些差异将HIV感染的精英控制者与典型的HIV患者区分开来。将根据临床数据构建和校准针对HIV感染的免疫反应的新的宿主内数学模型。这项研究的新见解可以帮助艾滋病毒疫苗的开发。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Li, Michael其他文献

Effect of corticosteroid dosing on outcomes in high-grade immune checkpoint inhibitor hepatitis
  • DOI:
    10.1002/hep.32215
  • 发表时间:
    2021-12-07
  • 期刊:
  • 影响因子:
    13.5
  • 作者:
    Li, Michael;Wong, Danny;Grover, Shilpa
  • 通讯作者:
    Grover, Shilpa
Selecting Children with Vesicoureteral Reflux Who are Most Likely to Benefit from Antibiotic Prophylaxis: Application of Machine Learning to RIVUR
  • DOI:
    10.1097/ju.0000000000001445
  • 发表时间:
    2021-04-01
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Bertsimas, Dimitris;Li, Michael;Wang, Hsin-Hsiao Scott
  • 通讯作者:
    Wang, Hsin-Hsiao Scott
Quantitative Spectral Data Analysis Using Extreme Learning Machines Algorithm Incorporated with PCA
  • DOI:
    10.3390/a14010018
  • 发表时间:
    2021-01-01
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Li, Michael;Wibowo, Santoso;Li, Lily D.
  • 通讯作者:
    Li, Lily D.
Two approaches to forecast Ebola synthetic epidemics
  • DOI:
    10.1016/j.epidem.2017.02.011
  • 发表时间:
    2018-03-01
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Champredon, David;Li, Michael;Dushoff, Jonathan
  • 通讯作者:
    Dushoff, Jonathan
Evidence that promotion of male circumcision did not lead to sexual risk compensation in prioritized Sub-Saharan countries
  • DOI:
    10.1371/journal.pone.0175928
  • 发表时间:
    2017-04-25
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Shi, Chyun-Fung;Li, Michael;Dushoff, Jonathan
  • 通讯作者:
    Dushoff, Jonathan

Li, Michael的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Li, Michael', 18)}}的其他基金

Analysis and Applications of Complex Dynamical Systems
复杂动力系统分析与应用
  • 批准号:
    RGPIN-2020-04134
  • 财政年份:
    2021
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis and Applications of Complex Dynamical Systems
复杂动力系统分析与应用
  • 批准号:
    RGPIN-2020-04134
  • 财政年份:
    2020
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Modeling of the Current COVID-19 Epidemic and Potential Second Wave in Alberta to Improve Public Health Responses
对艾伯塔省当前的 COVID-19 疫情和潜在的第二波疫情进行数学建模,以改善公共卫生应对措施
  • 批准号:
    555037-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Alliance Grants
Mathematical Analysis and Statistical Inference of Complex Dynamical Systems
复杂动力系统的数学分析和统计推断
  • 批准号:
    RGPIN-2015-05395
  • 财政年份:
    2019
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Analysis and Statistical Inference of Complex Dynamical Systems
复杂动力系统的数学分析和统计推断
  • 批准号:
    RGPIN-2015-05395
  • 财政年份:
    2018
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Advancement of automated data collection using web bots
使用网络机器人改进自动数据收集
  • 批准号:
    522447-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Experience Awards (previously Industrial Undergraduate Student Research Awards)
Mathematical Analysis and Statistical Inference of Complex Dynamical Systems
复杂动力系统的数学分析和统计推断
  • 批准号:
    RGPIN-2015-05395
  • 财政年份:
    2017
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Analysis and Statistical Inference of Complex Dynamical Systems
复杂动力系统的数学分析和统计推断
  • 批准号:
    RGPIN-2015-05395
  • 财政年份:
    2016
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Analysis and Statistical Inference of Complex Dynamical Systems
复杂动力系统的数学分析和统计推断
  • 批准号:
    RGPIN-2015-05395
  • 财政年份:
    2015
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical investigations of dynamical systems on complex networks
复杂网络动力系统的数学研究
  • 批准号:
    238901-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Applications of AI in Market Design
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研 究基金项目
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Analysis and Applications of Complex Dynamical Systems
复杂动力系统分析与应用
  • 批准号:
    RGPIN-2020-04134
  • 财政年份:
    2021
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis and Applications of Complex Dynamical Systems
复杂动力系统分析与应用
  • 批准号:
    RGPIN-2020-04134
  • 财政年份:
    2020
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Modern Aspects of Complex Analysis and Its Applications
复分析的现代方面及其应用
  • 批准号:
    1901600
  • 财政年份:
    2019
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Standard Grant
Complex Analysis: Techniques, Applications and Computations
复杂分析:技术、应用和计算
  • 批准号:
    1933403
  • 财政年份:
    2019
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Standard Grant
Nonlinear Empirical Mode Analysis of Complex Systems: Development of General Approach and Applications in Climate
复杂系统的非线性经验模态分析:通用方法的发展及其在气候中的应用
  • 批准号:
    405856037
  • 财政年份:
    2019
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Research Grants
Collaborative Research: A Posteriori Error Analysis for Complex Models with Applications to Efficient Numerical Solution and Uncertainty Quantification
协作研究:复杂模型的后验误差分析及其在高效数值求解和不确定性量化中的应用
  • 批准号:
    1720473
  • 财政年份:
    2017
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Standard Grant
Collaborative Research: A Posteriori Error Analysis for Complex Models with Applications to Efficient Numerical Solution and Uncertainty Quantification
协作研究:复杂模型的后验误差分析及其在高效数值求解和不确定性量化中的应用
  • 批准号:
    1720402
  • 财政年份:
    2017
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Standard Grant
"Quantization, coherent states and complex orthogonal polynomials: applications to physics and signal analysis"
“量化、相干态和复杂的正交多项式:在物理和信号分析中的应用”
  • 批准号:
    5594-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Integrating Microwave Link Data For Analysis of Precipitation in Complex Terrain: Theoretical Aspects and Hydrometeorological Applications (IMAP)
集成微波链路数据以分析复杂地形的降水:理论方面和水文气象应用 (IMAP)
  • 批准号:
    254695484
  • 财政年份:
    2014
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Research Grants
"Quantization, coherent states and complex orthogonal polynomials: applications to physics and signal analysis"
“量化、相干态和复杂的正交多项式:在物理和信号分析中的应用”
  • 批准号:
    5594-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了