Harmonic analysis, additive combinatorics and geometric measure theory
调和分析、加性组合学和几何测度论
基本信息
- 批准号:RGPIN-2017-03755
- 负责人:
- 金额:$ 5.39万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Fractals are objects that exhibit a multiscale structure and can be assigned a "number of dimensions" that is not necessarily integer. They are ubiquitous in nature (plant growth, landscape formation), and can also be produced by human activity (communication systems, infrastructure networks). In mathematics, they arise in many problems in fields such as mathematical physics or partial differential equations, and are studied extensively in geometric measure theory and dynamical systems. Fractals often display chaotic behaviour, in the sense that a fractal object constructed by iterating a relatively simple replication rule can exhibit very high levels of complexity and behave in ways that are very difficult to predict in advance. The first goal of the proposed research is to develop new methods of studying such structures, based on harmonic analysis and additive combinatorics. Traditionally, the use of harmonic analysis in the study of fractals has been relatively limited. I plan to develop a theory of singular and oscillatory integrals for fractal sets, modelled after the analogous theory for smooth manifolds in classical harmonic analysis (including restriction estimates, maximal and averaging operators, and differentiation theorems), but also incorporating new features that only occur in the fractal setting. This work will draw on the insights and methods from both harmonic analysis and the more recently developed field of additive combinatorics. While some foundational results have already been obtained, proving that this is a viable and interesting theory, many further questions remain open. In particular, fractal sets can exhibit harmonic-analytic behaviour that does not have exact analogues either for manifolds or for the discrete objects studied in additive combinatorics, and I would like to investigate these new phenomena.The second goal is to apply these developments to questions in dimension theory, geometric measure theory and dynamical systems. A central family of questions in geometric measure theory concerns projections, slices, intersections, and arithmetic sums and differences of sets of specified dimensionality. Of particular significance are fractal sets that arise in dynamical systems and mathematical physics, such as attractors or invariant sets. For example, it can be very easy to say what a "typical" projection or slice of a fractal should look like, but very difficult to prove a similar statement about a specific projection or slice. Similarly, there are many situations where qualitative results are easy to prove, but it is much harder to obtain a quantitative estimate. Harmonic analysis has been useful in such contexts in the past, and I expect that the new methods I plan to develop will lead to further advances.
分形是表现出多尺度结构的对象,可以分配一个不一定是整数的“维数”。它们在自然界中无处不在(植物生长,景观形成),也可以由人类活动(通信系统,基础设施网络)产生。在数学中,它们出现在数学物理或偏微分方程等领域的许多问题中,并在几何测度论和动力系统中得到广泛研究。分形通常表现出混沌行为,在某种意义上,通过迭代相对简单的复制规则构建的分形对象可以表现出非常高的复杂性,并且以非常难以提前预测的方式表现。提出的研究的第一个目标是开发新的方法来研究这种结构,基于谐波分析和添加剂组合学。传统上,调和分析在分形研究中的应用相对有限。我计划开发一个理论的奇异和振荡积分的分形集,仿照类似的理论光滑流形在经典调和分析(包括限制估计,最大和平均运营商,微分定理),但也纳入新的功能,只发生在分形设置。这项工作将借鉴调和分析和最近开发的加法组合学领域的见解和方法。虽然已经获得了一些基础性的结果,证明这是一个可行的和有趣的理论,许多进一步的问题仍然是开放的。特别是,分形集可以表现出谐波分析行为,没有确切的类似物,无论是流形或离散对象的研究添加剂组合,我想调查这些新现象。第二个目标是将这些发展问题的维数理论,几何测度理论和动力系统。几何测度论中的一个核心问题涉及投影、切片、交集以及指定维数集合的算术和与差。特别重要的是分形集,出现在动力系统和数学物理,如吸引子或不变集。例如,说一个分形的“典型”投影或切片应该是什么样子可能很容易,但要证明一个关于特定投影或切片的类似陈述却很困难。同样,在许多情况下,定性结果很容易证明,但要获得定量估计则要困难得多。在过去,谐波分析在这种情况下是有用的,我希望我计划开发的新方法将带来进一步的进步。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Laba, Izabella其他文献
Laba, Izabella的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Laba, Izabella', 18)}}的其他基金
Harmonic analysis, additive combinatorics and geometric measure theory
调和分析、加性组合学和几何测度论
- 批准号:
RGPIN-2017-03755 - 财政年份:2021
- 资助金额:
$ 5.39万 - 项目类别:
Discovery Grants Program - Individual
Harmonic analysis, additive combinatorics and geometric measure theory
调和分析、加法组合学和几何测度论
- 批准号:
RGPIN-2017-03755 - 财政年份:2020
- 资助金额:
$ 5.39万 - 项目类别:
Discovery Grants Program - Individual
Harmonic analysis, additive combinatorics and geometric measure theory
调和分析、加法组合学和几何测度论
- 批准号:
RGPIN-2017-03755 - 财政年份:2019
- 资助金额:
$ 5.39万 - 项目类别:
Discovery Grants Program - Individual
Harmonic analysis, additive combinatorics and geometric measure theory
调和分析、加法组合学和几何测度论
- 批准号:
RGPIN-2017-03755 - 财政年份:2018
- 资助金额:
$ 5.39万 - 项目类别:
Discovery Grants Program - Individual
"Harmonic analysis, additive combinatorics and geometric measure theory"
“调和分析、加法组合学和几何测度论”
- 批准号:
229818-2012 - 财政年份:2016
- 资助金额:
$ 5.39万 - 项目类别:
Discovery Grants Program - Individual
"Harmonic analysis, additive combinatorics and geometric measure theory"
“调和分析、加法组合学和几何测度论”
- 批准号:
229818-2012 - 财政年份:2015
- 资助金额:
$ 5.39万 - 项目类别:
Discovery Grants Program - Individual
"Harmonic analysis, additive combinatorics and geometric measure theory"
“调和分析、加法组合学和几何测度论”
- 批准号:
229818-2012 - 财政年份:2014
- 资助金额:
$ 5.39万 - 项目类别:
Discovery Grants Program - Individual
"Harmonic analysis, additive combinatorics and geometric measure theory"
“调和分析、加法组合学和几何测度论”
- 批准号:
229818-2012 - 财政年份:2013
- 资助金额:
$ 5.39万 - 项目类别:
Discovery Grants Program - Individual
"Harmonic analysis, additive combinatorics and geometric measure theory"
“调和分析、加法组合学和几何测度论”
- 批准号:
229818-2012 - 财政年份:2012
- 资助金额:
$ 5.39万 - 项目类别:
Discovery Grants Program - Individual
Harmonic analysis and arithmetic combinatorics
调和分析与算术组合
- 批准号:
229818-2007 - 财政年份:2011
- 资助金额:
$ 5.39万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
黄连素及其复方制剂抑制结直肠腺瘤发生发展的作用及临床用药合理性分析
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于 UPLC-Q-TOF-MS/MS 分析的 异功散活性成分评价及提取工艺研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
硒矿床区域浮游植物群落结构及多样性分析
- 批准号:JCZRLH202501136
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
纳米离子探针原位分析鄂西地区二叠系孤峰组与梁山组页岩气差异性富集机理
- 批准号:JCZRLH202501173
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
地质样品中战略矿产元素电弧激发机理与分析方法研究
- 批准号:JCZRLH202501244
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
磷酸化参与调控双硫仑诱导细胞自噬的生物信息学研究
- 批准号:JCZRYB202500751
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于多重影像病理组学联合泛化机器学习探究口咽癌免疫分型预测及预后模型的构建
- 批准号:JCZRYB202501213
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
面向抗阻训练智能化的测速分析模型和装置应用研究
- 批准号:JCZRLH202500177
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
运动帆船回转-横摇耦合运动时船体-稳向板-舵耦合作用机制研究
- 批准号:JCZRLH202500645
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
高速公路自动驾驶专用道设置技术标准和交通影响评价研究
- 批准号:JCZRLH202500619
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Harmonic analysis, additive combinatorics and geometric measure theory
调和分析、加性组合学和几何测度论
- 批准号:
RGPIN-2017-03755 - 财政年份:2021
- 资助金额:
$ 5.39万 - 项目类别:
Discovery Grants Program - Individual
Harmonic analysis, additive combinatorics and geometric measure theory
调和分析、加法组合学和几何测度论
- 批准号:
RGPIN-2017-03755 - 财政年份:2020
- 资助金额:
$ 5.39万 - 项目类别:
Discovery Grants Program - Individual
Topics in Harmonic Analysis: Time-frequency Analysis and connections with Additive Combinatorics and Partial Differential Equations
谐波分析主题:时频分析以及与加性组合和偏微分方程的联系
- 批准号:
1900801 - 财政年份:2019
- 资助金额:
$ 5.39万 - 项目类别:
Standard Grant
Harmonic analysis, additive combinatorics and geometric measure theory
调和分析、加法组合学和几何测度论
- 批准号:
RGPIN-2017-03755 - 财政年份:2019
- 资助金额:
$ 5.39万 - 项目类别:
Discovery Grants Program - Individual
Harmonic analysis, additive combinatorics and geometric measure theory
调和分析、加法组合学和几何测度论
- 批准号:
RGPIN-2017-03755 - 财政年份:2018
- 资助金额:
$ 5.39万 - 项目类别:
Discovery Grants Program - Individual
"Harmonic analysis, additive combinatorics and geometric measure theory"
“调和分析、加法组合学和几何测度论”
- 批准号:
229818-2012 - 财政年份:2016
- 资助金额:
$ 5.39万 - 项目类别:
Discovery Grants Program - Individual
Topics in Harmonic Analysis: Interplay between Time-Frequency Analysis, Additive Combinatorics and Partial Differential Equations
谐波分析主题:时频分析、加法组合学和偏微分方程之间的相互作用
- 批准号:
1500958 - 财政年份:2015
- 资助金额:
$ 5.39万 - 项目类别:
Continuing Grant
"Harmonic analysis, additive combinatorics and geometric measure theory"
“调和分析、加法组合学和几何测度论”
- 批准号:
229818-2012 - 财政年份:2015
- 资助金额:
$ 5.39万 - 项目类别:
Discovery Grants Program - Individual
"Harmonic analysis, additive combinatorics and geometric measure theory"
“调和分析、加法组合学和几何测度论”
- 批准号:
229818-2012 - 财政年份:2014
- 资助金额:
$ 5.39万 - 项目类别:
Discovery Grants Program - Individual
"Harmonic analysis, additive combinatorics and geometric measure theory"
“调和分析、加法组合学和几何测度论”
- 批准号:
229818-2012 - 财政年份:2013
- 资助金额:
$ 5.39万 - 项目类别:
Discovery Grants Program - Individual