Topics in Harmonic Analysis: Time-frequency Analysis and connections with Additive Combinatorics and Partial Differential Equations

谐波分析主题:时频分析以及与加性组合和偏微分方程的联系

基本信息

  • 批准号:
    1900801
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-15 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

This project lies mainly within the area of harmonic analysis, with a special focus on revealing the deep connections between time-frequency analysis and fields such as additive combinatorics, incidence geometry, and partial differential equations (PDE). The project investigates three major themes: 1) the problem of the pointwise convergence of Fourier series (near the integrability threshold), 2) the role of curvature in several model problems connected with major open problems including Zygmund's differentiation conjecture and the boundedness of the trilinear Hilbert transform, and 3) applications in PDE and fluid mechanics. The first theme of pointwise convergence lies at the very foundation of Fourier analysis and has a history of more than 200 years. Along the way, it has generated new areas within mathematical analysis (e.g. time-frequency analysis) and served as a motivation and inspiration for the development of wavelet theory -- a field that nowadays has numerous real-world applications in engineering (image processing, data recovery), medicine (MRI), and other fields. The second theme aims to understand toy curved models designed to shed new light on longstanding open problems with applications to ergodic theory and number theory. Finally, the third theme deals with questions such as the global behavior of the maximal Schrodinger operator and the study of singularity formation in two dimensions for water waves -- the latter having direct implications for our understanding of physical reality.This is a diverse project involving relevant problems in harmonic analysis, with applications in several related fields. The PI has obtained relevant progress on all three of the themes discussed above. Indeed, for the first theme, the PI completely solved the lacunary model of the problem, in particular verifying a conjecture posed by Konyagin at the 2006 International Congress of Mathematicians. Moreover, in the course of his work on the lacunary model, the PI established deep and surprising connections between time-frequency analysis and additive combinatorics, which he is now using to develop a new methodology for approaching the longstanding full problem. For the second theme -- meant to develop a deeper understanding of the role of curvature in harmonic analysis, by studying the transition from nonflat to flat models of some difficult well-known open problems -- the PI developed a program which recently unified three directions: the Hilbert transform, the bilinear Hilbert transform, and the Carleson operator along non-flat curves (together with their maximal variants). The third theme has strong connections with dispersive PDE and fluid mechanics. The fluid mechanics component is part of a joint project and aims to understand the asymptotic geometry of the interface between two fluids in a 2D setting as the interface approaches a "splash" scenario from the water-wave case. This project builds on the previous joint work of the PI together with C. Fefferman and A. Ionescu on the lack of splash singularity formation in the 2D case of locally smooth two-fluid interfaces under irrotational assumptions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目主要在谐波分析领域,特别关注揭示时频分析与加法组合学,关联几何和偏微分方程(PDE)等领域之间的深层联系。 该项目研究三个主要主题:1)傅立叶级数的逐点收敛问题(接近可积性阈值),2)曲率在与主要开放问题(包括Zygmund微分猜想和三线性希尔伯特变换的有界性)相关的几个模型问题中的作用,以及3)在PDE和流体力学中的应用。第一个问题是点态收敛,它是傅立叶分析的基础,已有200多年的历史。沿着的方式,它产生了新的领域内的数学分析(例如,时间-频率分析),并作为一个动机和灵感的发展小波理论-一个领域,现在有许多现实世界中的应用工程(图像处理,数据恢复),医学(MRI),和其他领域。第二个主题旨在了解玩具弯曲模型,旨在揭示新的光长期开放的问题与应用遍历理论和数论。 最后,第三个主题涉及的问题,如全球行为的最大薛定谔算子和研究的奇异性形成在两个维度的水波-后者有直接影响我们的理解物理现实。这是一个多样化的项目,涉及相关问题的调和分析,在几个相关领域的应用。PI在上述所有三个主题上都取得了相关进展。事实上,对于第一个主题,PI完全解决了该问题的缺陷模型,特别是验证了Konyagin在2006年国际数学家大会上提出的猜想。 此外,在他对空缺模型的研究过程中,PI在时频分析和加法组合学之间建立了深刻而令人惊讶的联系,他现在正在使用这种联系来开发一种新的方法来解决长期存在的完整问题。对于第二个主题--通过研究从非平坦模型到平坦模型的一些困难的知名开放问题,旨在更深入地了解曲率在调和分析中的作用--PI开发了一个程序,最近统一了三个方向:希尔伯特变换,双线性希尔伯特变换和沿沿着非平坦曲线的Carleson算子(以及它们的最大变量)。 第三个主题与色散偏微分方程和流体力学有很强的联系。流体力学部分是一个联合项目的一部分,旨在了解在二维环境中两种流体之间的界面的渐近几何形状,因为界面接近水波情况下的“飞溅”场景。 该项目建立在PI与C. February man和A. Ionescu在非旋转假设下局部光滑的两流体界面的二维情况下缺乏飞溅奇点的形成。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Victor Lie其他文献

Non-zero to zero curvature transition: Operators along hybrid curves with no quadratic (quasi-)resonances
从零到零曲率的转变:沿着没有二次(准)共振的混合曲线的算符
  • DOI:
    10.1016/j.aim.2025.110356
  • 发表时间:
    2025-10-01
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Alejandra Gaitan;Victor Lie
  • 通讯作者:
    Victor Lie
Long term regularity of the one-fluid Euler–Maxwell system in 3D with vorticity
具有涡度的 3D 单流体欧拉-麦克斯韦系统的长期规律性
  • DOI:
    10.1016/j.aim.2017.11.027
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    A. Ionescu;Victor Lie
  • 通讯作者:
    Victor Lie
On the boundedness of the bilinear Hilbert transform along “non-flat” smooth curves
关于双线性希尔伯特变换沿“非平坦”光滑曲线的有界性
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Victor Lie
  • 通讯作者:
    Victor Lie
A unified approach to three themes in harmonic analysis (I & II): (I) The linear Hilbert transform and maximal operator along variable curves (II) Carleson type operators in the presence of curvature
调和分析中三个主题的统一方法(I 和 II):(I)沿可变曲线的线性希尔伯特变换和极大算子(II)存在曲率时的卡尔松型算子
  • DOI:
    10.1016/j.aim.2023.109385
  • 发表时间:
    2024-02-01
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Victor Lie
  • 通讯作者:
    Victor Lie
The pointwise convergence of Fourier Series (II). Strong L1 case for the lacunary Carleson operator
  • DOI:
    10.1016/j.aim.2019.106831
  • 发表时间:
    2019-02
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Victor Lie
  • 通讯作者:
    Victor Lie

Victor Lie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Victor Lie', 18)}}的其他基金

Topics in Harmonic Analysis: Interplay between Time-Frequency Analysis, Additive Combinatorics and Partial Differential Equations
谐波分析主题:时频分析、加法组合学和偏微分方程之间的相互作用
  • 批准号:
    1500958
  • 财政年份:
    2015
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Some topics in time-frequency analysis
时频分析的一些主题
  • 批准号:
    1449514
  • 财政年份:
    2013
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Some topics in time-frequency analysis
时频分析的一些主题
  • 批准号:
    1200932
  • 财政年份:
    2012
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似国自然基金

算子方法在Harmonic数恒等式中的应用
  • 批准号:
    11201241
  • 批准年份:
    2012
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
Ricci-Harmonic流的长时间存在性
  • 批准号:
    11126190
  • 批准年份:
    2011
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Geometric Harmonic Analysis: Advances in Radon-like Transforms and Related Topics
几何调和分析:类氡变换及相关主题的进展
  • 批准号:
    2348384
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Averaging operators and related topics in harmonic analysis
谐波分析中的平均运算符和相关主题
  • 批准号:
    2348797
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Topics in Discrete Harmonic Analysis
离散谐波分析主题
  • 批准号:
    2247254
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Topics in Abstract, Applied, and Computational Harmonic Analysis
合作研究:抽象、应用和计算谐波分析主题
  • 批准号:
    2205852
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Topics in Abstract, Applied, and Computational Harmonic Analysis
合作研究:抽象、应用和计算谐波分析主题
  • 批准号:
    2205771
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Topics in Harmonic Analysis: Maximal Functions, Singular Integrals, and Multilinear Inequalities
调和分析主题:极大函数、奇异积分和多重线性不等式
  • 批准号:
    2154835
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Topics in harmonic analysis and PDEs
调和分析和偏微分方程主题
  • 批准号:
    2747978
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Studentship
Selected topics in harmonic analysis
谐波分析精选主题
  • 批准号:
    RGPIN-2017-03752
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Discovery Grants Program - Individual
Harmonic Analysis and Related Topics
谐波分析及相关主题
  • 批准号:
    2001162
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Selected topics in harmonic analysis
谐波分析精选主题
  • 批准号:
    RGPIN-2017-03752
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了