Symplectic topology and equivariant geometry

辛拓扑和等变几何

基本信息

  • 批准号:
    RGPIN-2020-06428
  • 负责人:
  • 金额:
    $ 1.31万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Symplectic geometry provides the mathematical framework of classical mechanics in its Hamiltonian formulation. It also underlies modern approaches to quantum theories and to General Relativity. During the past 30 years, the study of the interactions between classical and quantum systems, as well as the introduction of powerful geometrical and analytical techniques, has led to the discovery of new structures and phenomena peculiar to symplectic objects that have no counterparts in classical differential geometry and topology. A central problem in symplectic geometry is to understand the symmetries, also called symplectomorphisms, of symplectic spaces. The set of all symplectic symmetries of a given space is itself an infinite dimensional geometric object called the symplectomorphism group of the space. This group is a very rich geometric object that encodes all the properties of the underlying space. From a physical point of view, symmetries are central to our understanding of the universe. For instance, the time evolution of a classical physical system correspond to a continous path on the symmetry group of the phase space. At a deeper level, continuous families of symmetries correspond to conserved quantities like energy, momentum, angular momentum, etc. We can even classify elementary particles in terms of symmetries.  Consequently, we can say that general properties of symplectic transformations correspond to general properties of physical systems. Moreover, through "quantization" procedures of symplectic spaces and of their symmetries, we often get a dictionary that relates the properties of classical systems with those of quantum systems. In this research, we are especially interested in the geometric properties of symplectomorphism groups, and in understanding how these infinite dimensional spaces compare to each other as the phase spaces change. The hope is to better understand what characterize symplectic spaces and symplectic transformations among all other possible geometric spaces studied in differential geometry.
辛几何在其哈密顿公式中提供了经典力学的数学框架。它也是量子理论和广义相对论的现代方法的基础。在过去的30年中,经典和量子系统之间的相互作用的研究,以及强大的几何和分析技术的引入,导致了新的结构和辛对象特有的现象,没有对应的经典微分几何和拓扑学的发现。辛几何的一个中心问题是理解辛空间的对称性,也称为辛同构。给定空间的所有辛对称的集合本身就是一个无限维的几何对象,称为空间的辛同构群。这个组是一个非常丰富的几何对象,它编码了底层空间的所有属性。从物理学的角度来看,对称性是我们理解宇宙的核心。例如,经典物理系统的时间演化对应于相空间对称群上的连续路径。在更深的层次上,连续的对称性族对应于能量、动量、角动量等守恒量,我们甚至可以根据对称性对基本粒子进行分类。 因此,我们可以说辛变换的一般性质对应于物理系统的一般性质。此外,通过辛空间及其对称性的“量子化”过程,我们经常得到一本将经典系统的性质与量子系统的性质联系起来的字典。在这项研究中,我们特别感兴趣的几何性质的辛同胚群,并在了解如何这些无限维空间相互比较相空间的变化。希望能更好地理解在微分几何中研究的所有其他可能的几何空间中,辛空间和辛变换的特征是什么。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pinsonnault, Martin其他文献

Pinsonnault, Martin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pinsonnault, Martin', 18)}}的其他基金

Symplectic topology and equivariant geometry
辛拓扑和等变几何
  • 批准号:
    RGPIN-2020-06428
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Symplectic topology and equivariant geometry
辛拓扑和等变几何
  • 批准号:
    RGPIN-2020-06428
  • 财政年份:
    2020
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Symplectomorphism Groups and Symplectic Topology
辛同胚群和辛拓扑
  • 批准号:
    RGPIN-2014-06241
  • 财政年份:
    2018
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Symplectomorphism Groups and Symplectic Topology
辛同胚群和辛拓扑
  • 批准号:
    RGPIN-2014-06241
  • 财政年份:
    2017
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Symplectomorphism Groups and Symplectic Topology
辛同胚群和辛拓扑
  • 批准号:
    RGPIN-2014-06241
  • 财政年份:
    2016
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Symplectomorphism Groups and Symplectic Topology
辛同胚群和辛拓扑
  • 批准号:
    RGPIN-2014-06241
  • 财政年份:
    2015
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Symplectomorphism Groups and Symplectic Topology
辛同胚群和辛拓扑
  • 批准号:
    RGPIN-2014-06241
  • 财政年份:
    2014
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry and topology of symplectomorphism groups
辛同胚群的几何和拓扑
  • 批准号:
    371999-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry and topology of symplectomorphism groups
辛同胚群的几何和拓扑
  • 批准号:
    371999-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry and topology of symplectomorphism groups
辛同胚群的几何和拓扑
  • 批准号:
    371999-2009
  • 财政年份:
    2011
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Fibered纽结的自同胚、Floer同调与4维亏格
  • 批准号:
    12301086
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
Domain理论与拓扑学研究
  • 批准号:
    60473009
  • 批准年份:
    2004
  • 资助金额:
    7.0 万元
  • 项目类别:
    面上项目

相似海外基金

Symplectic topology and equivariant geometry
辛拓扑和等变几何
  • 批准号:
    RGPIN-2020-06428
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Equivariant topology and symplectic geometry
等变拓扑和辛几何
  • 批准号:
    RGPIN-2015-05382
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Symplectic topology and equivariant geometry
辛拓扑和等变几何
  • 批准号:
    RGPIN-2020-06428
  • 财政年份:
    2020
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Equivariant topology and symplectic geometry
等变拓扑和辛几何
  • 批准号:
    RGPIN-2015-05382
  • 财政年份:
    2020
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Equivariant Floer Theory and Low-dimensional Topology
职业:等变Floer理论和低维拓扑
  • 批准号:
    2019396
  • 财政年份:
    2019
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Continuing Grant
International Conference on Equivariant Topology and Derived Algebra
等变拓扑与派生代数国际会议
  • 批准号:
    1901120
  • 财政年份:
    2019
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
Equivariant topology and symplectic geometry
等变拓扑和辛几何
  • 批准号:
    RGPIN-2015-05382
  • 财政年份:
    2019
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Equivariant algebraic topology and equivariant loop spaces
等变代数拓扑和等变环空间
  • 批准号:
    2105861
  • 财政年份:
    2018
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Studentship
CAREER: Equivariant Floer Theory and Low-dimensional Topology
职业:等变Floer理论和低维拓扑
  • 批准号:
    1751857
  • 财政年份:
    2018
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Continuing Grant
Constructing geometric representations of finite groups through equivariant topology
通过等变拓扑构造有限群的几何表示
  • 批准号:
    18K03304
  • 财政年份:
    2018
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了