Symplectomorphism Groups and Symplectic Topology
辛同胚群和辛拓扑
基本信息
- 批准号:RGPIN-2014-06241
- 负责人:
- 金额:$ 1.02万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Symplectic geometry provides the mathematical framework of classical mechanics in its Hamiltonian formulation. It also underlies modern approaches to quantum theories and to General Relativity. During the past 25 years, the study of the interactions between classical and quantum systems, as well as the introduction of powerful geometrical and analytical techniques, has led to the discovery of new structures and phenomena peculiar to symplectic objects that have no counterparts in classical differential geometry and topology. **A central problem in symplectic geometry is to understand the symmetries, also called symplectomorphisms, of symplectic spaces. The set of all symplectic symmetries of a given space is itself an infinite dimensional geometric object called the symplectomorphism group of the space. This group is a very rich geometric object that encodes all the properties of the underlying space. From a physical point of view, continuous families of symmetries of the phase space correspond to conserved quantities like energy, momentum, angular momentum, etc. Moreover, the time evolution of a classical physical system correspond to a continous path on the symplectomorphism group of the phase space. Consequently, general properties of symplectic transformations correspond to general properties of classical physical systems. Moreover, through "quantization" procedures, we often get insights into properties of quantum systems. Conversely, properties of quantum systems sometimes lead to surprizing predictions for classical systems through a procedure called "semi-classical approximation".**In this research, I am especially interested in the homotopy-theoretical and geometric properties of symplectomorphism groups, with a view to applications to low dimensional geometry and to mathematical physics. I plan to further study the homotopy type of symplectomorphism groups of rational 4-manifolds, to determine the homotopy type of some spaces of symplectic and Lagrangian embeddings, to study symplectic group actions, and to explore the (very little understood) links between modern symplectic topology and quantum systems given by new quantization procedures that are based on intrinsic properties of symplectic transformations.
辛几何在其哈密顿公式中提供了经典力学的数学框架。它也是量子理论和广义相对论的现代方法的基础。在过去的25年中,经典和量子系统之间的相互作用的研究,以及强大的几何和分析技术的引入,导致了新的结构和辛对象特有的现象,没有对应的经典微分几何和拓扑学的发现。** 辛几何的一个中心问题是理解辛空间的对称性,也称为辛同构。给定空间的所有辛对称的集合本身就是一个无限维的几何对象,称为空间的辛同构群。这个组是一个非常丰富的几何对象,它编码了底层空间的所有属性。从物理学的角度来看,相空间的连续对称性族对应于能量、动量、角动量等守恒量。此外,经典物理系统的时间演化对应于相空间的辛态群上的连续路径。因此,辛变换的一般性质对应于经典物理系统的一般性质。此外,通过“量子化”过程,我们经常可以深入了解量子系统的性质。相反,量子系统的性质有时会通过一个称为“半经典近似”的过程导致对经典系统的预测的错误。在这项研究中,我特别感兴趣的同伦理论和几何性质的辛同胚群,以期应用到低维几何和数学物理。我计划进一步研究同伦类型的辛同胚群的理性4-流形,以确定同伦类型的一些空间的辛和拉格朗日嵌入,研究辛群的行动,并探讨(很少了解)之间的联系现代辛拓扑和量子系统的新的量化程序,是基于内在性质的辛变换。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pinsonnault, Martin其他文献
Pinsonnault, Martin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pinsonnault, Martin', 18)}}的其他基金
Symplectic topology and equivariant geometry
辛拓扑和等变几何
- 批准号:
RGPIN-2020-06428 - 财政年份:2022
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Symplectic topology and equivariant geometry
辛拓扑和等变几何
- 批准号:
RGPIN-2020-06428 - 财政年份:2021
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Symplectic topology and equivariant geometry
辛拓扑和等变几何
- 批准号:
RGPIN-2020-06428 - 财政年份:2020
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Symplectomorphism Groups and Symplectic Topology
辛同胚群和辛拓扑
- 批准号:
RGPIN-2014-06241 - 财政年份:2017
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Symplectomorphism Groups and Symplectic Topology
辛同胚群和辛拓扑
- 批准号:
RGPIN-2014-06241 - 财政年份:2016
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Symplectomorphism Groups and Symplectic Topology
辛同胚群和辛拓扑
- 批准号:
RGPIN-2014-06241 - 财政年份:2015
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Symplectomorphism Groups and Symplectic Topology
辛同胚群和辛拓扑
- 批准号:
RGPIN-2014-06241 - 财政年份:2014
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Geometry and topology of symplectomorphism groups
辛同胚群的几何和拓扑
- 批准号:
371999-2009 - 财政年份:2013
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Geometry and topology of symplectomorphism groups
辛同胚群的几何和拓扑
- 批准号:
371999-2009 - 财政年份:2012
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Geometry and topology of symplectomorphism groups
辛同胚群的几何和拓扑
- 批准号:
371999-2009 - 财政年份:2011
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Representation theory of elliptic quantum groups and symplectic duality
椭圆量子群和辛对偶性的表示论
- 批准号:
20K03507 - 财政年份:2020
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on symplectic quotients concerned with decompositions of representations of Lie groups
与李群表示分解有关的辛商的研究
- 批准号:
19K03475 - 财政年份:2019
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Symplectomorphism Groups and Symplectic Topology
辛同胚群和辛拓扑
- 批准号:
RGPIN-2014-06241 - 财政年份:2017
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Symplectomorphism Groups and Symplectic Topology
辛同胚群和辛拓扑
- 批准号:
RGPIN-2014-06241 - 财政年份:2016
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
A-packets for low rank symplectic groups
低阶辛群的 A 包
- 批准号:
482326-2015 - 财政年份:2015
- 资助金额:
$ 1.02万 - 项目类别:
University Undergraduate Student Research Awards
Symplectomorphism Groups and Symplectic Topology
辛同胚群和辛拓扑
- 批准号:
RGPIN-2014-06241 - 财政年份:2015
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
The cohomology ring of symplectic quotients of loop groups equipped with Hamiltonian group actions
具有哈密顿群作用的环群辛商的上同调环
- 批准号:
443919-2013 - 财政年份:2015
- 资助金额:
$ 1.02万 - 项目类别:
Postgraduate Scholarships - Doctoral
L-packets and A-packets for symplectic groups
辛群的 L 包和 A 包
- 批准号:
466130-2014 - 财政年份:2014
- 资助金额:
$ 1.02万 - 项目类别:
University Undergraduate Student Research Awards
The cohomology ring of symplectic quotients of loop groups equipped with Hamiltonian group actions
具有哈密顿群作用的环群辛商的上同调环
- 批准号:
443919-2013 - 财政年份:2014
- 资助金额:
$ 1.02万 - 项目类别:
Postgraduate Scholarships - Doctoral
Symplectomorphism Groups and Symplectic Topology
辛同胚群和辛拓扑
- 批准号:
RGPIN-2014-06241 - 财政年份:2014
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual