Bifurcation, uniqueness and regularity for differential equations with critical and supercritical drifts

具有临界和超临界漂移的微分方程的分岔、唯一性和正则性

基本信息

  • 批准号:
    RGPIN-2018-04137
  • 负责人:
  • 金额:
    $ 1.46万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

We are motivated by the following problems for the 3D incompressible Navier-Stokes equations (NS). For NS with large initial data, the uniqueness of weak solutions and the global in time regularity of strong solutions are both outstanding open questions. A third outstanding open question is the existence of a stationary solution of the boundary value problem (BVP) with large boundary data when the boundary has multiple components. The key issue for all these 3 problems is the lack of understanding of the (nonlinear) drift term, which competes with the diffusion. For the regularity question, known examples, with the drift term modified, show that it is not sufficient to only consider energy estimates and imbedding. The uniqueness question is closely related to the BVP of the Leray system obtained from NS by a similarity transform. The study of the BVP relies on the spectral analysis of the linearized operators, for which the structure of the drift term again is significant.We propose a systematic study of the questions of bifurcation of BVP, uniqueness and regularity for a sequence of related systems of PDEs with drift terms. We first consider an elliptic or parabolic differential equation for a scalar function defined in $R^n$ with a drift term in the equation. The coefficient of the drift will be assumed either critical (belonging to weak $L^n$), or supercritical (belonging to $L^q$, $q
本文主要研究三维不可压N-S方程(NS)的以下问题。对于具有大初始数据的NS,弱解的唯一性和强解的全局时间正则性都是突出的开放问题。第三个悬而未决的问题是当边界具有多个分量时,具有大量边界数据的边值问题(BVP)的定常解的存在性。所有这三个问题的关键问题都是对(非线性)漂移项的缺乏理解,它与扩散竞争。对于正则性问题,已知的例子表明,修改了漂移项后,仅考虑能量估计和嵌入是不够的。唯一性问题与通过相似变换从NS得到的Leray系统的边值问题密切相关。边值问题的研究依赖于线性化算子的谱分析,对于线性化算子的谱分析,漂移项的结构同样具有重要意义。本文系统地研究了一类相关的具有漂移项的偏微分方程组的边值问题的分支、唯一性和正则性问题。我们首先考虑定义在$R^n$中的具有漂移项的标量函数的椭圆型或抛物型微分方程。假定漂移系数为临界(属于弱$L^n$)或超临界(属于$L^q$,$q

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tsai, TaiPeng其他文献

Tsai, TaiPeng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tsai, TaiPeng', 18)}}的其他基金

Bifurcation, uniqueness and regularity for differential equations with critical and supercritical drifts
具有临界和超临界漂移的微分方程的分岔、唯一性和正则性
  • 批准号:
    RGPIN-2018-04137
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Bifurcation, uniqueness and regularity for differential equations with critical and supercritical drifts
具有临界和超临界漂移的微分方程的分岔、唯一性和正则性
  • 批准号:
    RGPIN-2018-04137
  • 财政年份:
    2020
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Bifurcation, uniqueness and regularity for differential equations with critical and supercritical drifts
具有临界和超临界漂移的微分方程的分岔、唯一性和正则性
  • 批准号:
    RGPIN-2018-04137
  • 财政年份:
    2019
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Bifurcation, uniqueness and regularity for differential equations with critical and supercritical drifts
具有临界和超临界漂移的微分方程的分岔、唯一性和正则性
  • 批准号:
    RGPIN-2018-04137
  • 财政年份:
    2018
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Asymptotics and singularities of evolution PDEs
进化偏微分方程的渐近性和奇点
  • 批准号:
    261356-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Asymptotics and singularities of evolution PDEs
进化偏微分方程的渐近性和奇点
  • 批准号:
    261356-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Asymptotics and singularities of evolution PDEs
进化偏微分方程的渐近性和奇点
  • 批准号:
    261356-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Asymptotics and singularities of evolution PDEs
进化偏微分方程的渐近性和奇点
  • 批准号:
    261356-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Asymptotics and singularities of evolution PDEs
进化偏微分方程的渐近性和奇点
  • 批准号:
    261356-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Asymptotics and singularities of evolution PDEs with critical nonlinearities
具有临界非线性的演化偏微分方程的渐近性和奇点
  • 批准号:
    261356-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Existence, Uniqueness, and Regularity for Equations in Mathematical Fluid Mechanics
数学流体力学方程的存在性、唯一性和正则性
  • 批准号:
    RGPIN-2019-05410
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Existence, regularity, uniqueness and stability in anisotropic geometric variational problems
职业:各向异性几何变分问题的存在性、规律性、唯一性和稳定性
  • 批准号:
    2143124
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Continuing Grant
Bifurcation, uniqueness and regularity for differential equations with critical and supercritical drifts
具有临界和超临界漂移的微分方程的分岔、唯一性和正则性
  • 批准号:
    RGPIN-2018-04137
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Existence, Uniqueness, and Regularity for Equations in Mathematical Fluid Mechanics
数学流体力学方程的存在性、唯一性和正则性
  • 批准号:
    RGPIN-2019-05410
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Existence, Uniqueness, and Regularity for Equations in Mathematical Fluid Mechanics
数学流体力学方程的存在性、唯一性和正则性
  • 批准号:
    RGPIN-2019-05410
  • 财政年份:
    2020
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Regularity, Stability, and Uniqueness Questions for Certain Non-Linear Partial Differential Equations
某些非线性偏微分方程的正则性、稳定性和唯一性问题
  • 批准号:
    1956092
  • 财政年份:
    2020
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
Bifurcation, uniqueness and regularity for differential equations with critical and supercritical drifts
具有临界和超临界漂移的微分方程的分岔、唯一性和正则性
  • 批准号:
    RGPIN-2018-04137
  • 财政年份:
    2020
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Bifurcation, uniqueness and regularity for differential equations with critical and supercritical drifts
具有临界和超临界漂移的微分方程的分岔、唯一性和正则性
  • 批准号:
    RGPIN-2018-04137
  • 财政年份:
    2019
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Existence, Uniqueness, and Regularity for Equations in Mathematical Fluid Mechanics
数学流体力学方程的存在性、唯一性和正则性
  • 批准号:
    RGPIN-2019-05410
  • 财政年份:
    2019
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Bifurcation, uniqueness and regularity for differential equations with critical and supercritical drifts
具有临界和超临界漂移的微分方程的分岔、唯一性和正则性
  • 批准号:
    RGPIN-2018-04137
  • 财政年份:
    2018
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了