Asymptotics and singularities of evolution PDEs
进化偏微分方程的渐近性和奇点
基本信息
- 批准号:261356-2013
- 负责人:
- 金额:$ 1.68万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
I propose to continue my recent work in two subjects, both of which are concerned with the asymptotics and singularities of evolution partial differential equations (PDEs).A. Dynamics of dispersive PDEs near unstable solitary waves: When a solitary wave of a dispersive PDE is stable, there are intensive studies showing how nearby solutions should relax to the solitary wave, locally in space. The detailed description of the dynamics near an unstable solitary wave is much less known, except when the nonlinearity is critical. I have succeeded in treating several special cases, and hope to attack the more general situations. I expect that one needs to use more sophisticated normal form reduction, based on Hamiltonian mechanic approach.B. Incompressible 3D Navier-Stokes equations: The outstanding regularity problem is supercritical in the sense that the nonlinearity cannot be controlled by the diffusion term. It is essential to first exclude singular solutions whose blow-up rates are comparable to the self-similar rate, which makes them critical. Most known regularity results assume smallness in this class. My recent work establishes regularity for axisymmetric flows in this class without smallness assumption. I hope to push this result to slightly supercritical case. My other recent result is on the existence of large forward discrete self-similar solutions. I plan to study their bifurcation, which is connected to the nonuniqueness question. Related, I am also interested in the existence problem of stationary flows with nonzero boundary flux condition.
我打算继续我最近在两个主题上的工作,这两个主题都与演化偏微分方程(PDEs)的渐近性和奇异性有关。色散偏微分方程在不稳定孤立波附近的动力学:当色散偏微分方程的一个孤立波是稳定的时,有大量的研究表明,在空间局部,附近的解应该如何弛豫到孤立波。不稳定孤立波附近动力学的详细描述很少为人所知,除非非线性是临界的。我已经成功地处理了几个特殊的情况,并希望攻击更普遍的情况。我认为需要使用更复杂的范式化简,基于哈密顿力学方法。不可压缩三维Navier-Stokes方程:突出的正则性问题是超临界的,即非线性不能由扩散项控制。重要的是首先要排除爆破率与自相似率相当的奇异解,这使得它们至关重要。在这类中,大多数已知的正则性结果都假定较小。我最近的工作在没有小假设的情况下建立了这类轴对称流动的规律性。我希望把这个结果推到稍微超临界的情况。我最近的另一个结果是关于大的前向离散自相似解的存在性。我打算研究它们的分叉,这与非唯一性问题有关。与此相关,我对非零边界流的存在性问题也很感兴趣。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tsai, TaiPeng其他文献
Tsai, TaiPeng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tsai, TaiPeng', 18)}}的其他基金
Bifurcation, uniqueness and regularity for differential equations with critical and supercritical drifts
具有临界和超临界漂移的微分方程的分岔、唯一性和正则性
- 批准号:
RGPIN-2018-04137 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Bifurcation, uniqueness and regularity for differential equations with critical and supercritical drifts
具有临界和超临界漂移的微分方程的分岔、唯一性和正则性
- 批准号:
RGPIN-2018-04137 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Bifurcation, uniqueness and regularity for differential equations with critical and supercritical drifts
具有临界和超临界漂移的微分方程的分岔、唯一性和正则性
- 批准号:
RGPIN-2018-04137 - 财政年份:2020
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Bifurcation, uniqueness and regularity for differential equations with critical and supercritical drifts
具有临界和超临界漂移的微分方程的分岔、唯一性和正则性
- 批准号:
RGPIN-2018-04137 - 财政年份:2019
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Bifurcation, uniqueness and regularity for differential equations with critical and supercritical drifts
具有临界和超临界漂移的微分方程的分岔、唯一性和正则性
- 批准号:
RGPIN-2018-04137 - 财政年份:2018
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Asymptotics and singularities of evolution PDEs
进化偏微分方程的渐近性和奇点
- 批准号:
261356-2013 - 财政年份:2016
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Asymptotics and singularities of evolution PDEs
进化偏微分方程的渐近性和奇点
- 批准号:
261356-2013 - 财政年份:2015
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Asymptotics and singularities of evolution PDEs
进化偏微分方程的渐近性和奇点
- 批准号:
261356-2013 - 财政年份:2014
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Asymptotics and singularities of evolution PDEs
进化偏微分方程的渐近性和奇点
- 批准号:
261356-2013 - 财政年份:2013
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Asymptotics and singularities of evolution PDEs with critical nonlinearities
具有临界非线性的演化偏微分方程的渐近性和奇点
- 批准号:
261356-2008 - 财政年份:2012
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Singularities and rigidity in geometric evolution equations
几何演化方程中的奇异性和刚性
- 批准号:
2304684 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Standard Grant
Geometric analysis of special structures in high dimensions inspired from physics; including singularities, torsion, and geometric evolution
受物理学启发的高维特殊结构的几何分析;
- 批准号:
RGPIN-2019-03933 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Geometric analysis of special structures in high dimensions inspired from physics; including singularities, torsion, and geometric evolution
受物理学启发的高维特殊结构的几何分析;
- 批准号:
RGPIN-2019-03933 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Evolution equations describing non-standard irreversible processes --Analysis on singularities emerging in the dynamics of solutions--
描述非标准不可逆过程的演化方程--解动力学中出现的奇点分析--
- 批准号:
20H01812 - 财政年份:2020
- 资助金额:
$ 1.68万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Geometric analysis of special structures in high dimensions inspired from physics; including singularities, torsion, and geometric evolution
受物理学启发的高维特殊结构的几何分析;
- 批准号:
RGPIN-2019-03933 - 财政年份:2020
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Geometric analysis of special structures in high dimensions inspired from physics; including singularities, torsion, and geometric evolution
受物理学启发的高维特殊结构的几何分析;
- 批准号:
RGPIN-2019-03933 - 财政年份:2019
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
"Analysis and applications of nonlinear evolution equations: waves, patterns, and singularities."
“非线性演化方程的分析和应用:波、模式和奇点。”
- 批准号:
251124-2012 - 财政年份:2016
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Analysis on moving singularities in evolution equations
演化方程中的移动奇点分析
- 批准号:
16K13769 - 财政年份:2016
- 资助金额:
$ 1.68万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Asymptotics and singularities of evolution PDEs
进化偏微分方程的渐近性和奇点
- 批准号:
261356-2013 - 财政年份:2016
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
"Analysis and applications of nonlinear evolution equations: waves, patterns, and singularities."
“非线性演化方程的分析和应用:波、模式和奇点。”
- 批准号:
251124-2012 - 财政年份:2015
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual