Classical and A1-homotopy theory of linear algebraic groups
线性代数群的经典和A1-同伦论
基本信息
- 批准号:RGPIN-2021-02603
- 负责人:
- 金额:$ 1.53万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project studies the interface between algebra and topology. We study the homotopy theory, i.e., the properties that do not change even after continuous deformations, of the symmetry groups of algebraic structures. The proposal is in two parts. The first is when the algebraic objects consist of vector spaces over a field k with no additional structure. In this case, the structure groups the general linear groups GLn, which are comprised of nxn invertible matrices. We study the A1-homotopy theory of GLn. A1-homotopy is a powerful way to define a homotopy theory of algebraically-defined objects. In this theory, first established in the late 1990s, one considers those deformations that may be defined by polynomial functions. In classical homotopy theory, much information about a space X is encoded in its homotopy groups: pi_n(X), which record the different homotopy-classes of continuous functions from spheres to X. In A1-homotopy, one may analogously define homotopy groups, but now the sense of homotopy is the A1-homotopy. The ordinary homotopy groups are difficult to calculate in most cases, and the A1-homotopy groups are even more difficult to determine. The A1-homotopy groups of GLn and related spaces encode subtle and mysterious information about the underlying field k, in the guise of the algebraic K-theory of k, and this proposal will calculate these homotopy groups in order to extract and make sense of that information. We will gain insight into the way in which the theory of vector bundles over an algebraic-geometric object X relates to the algebraic K-theory of X. We will also learn more about the homotopy groups of the spheres themselves, since the group GLn is a symmetry group of the A1-homotopy sphere A^n-0. The second part of the proposal examines what happens when the vector space A has an additional structure, such as multiplication. A is then an algebra, a prevalent structure in mathematics. The symmetries G are restricted by the multiplication of A and are harder to understand than in the case where the multiplication was absent. There are particular geometric spaces associated to the data of (G,A): spaces parametrizing r-tuples of elements in A that are sufficient to generate the entire algebraic structure of A. These spaces are little-studied to date, but because they are algebraically defined, we may use algebraic techniques to examine their ordinary homotopy theory, facilitating a number of explicit calculations. In this way, we will cast light on the symmetry group G and on algebraic structures related to A. The project will use homotopy theory to deepen our fundamental knowledge about several different kinds of widely-used algebraic structures: algebras, algebras with involution, vector bundles on algebraic objects, and fields (through the K-theory). It will also tell us more about the topology of maps between spheres, which are the most fundamental topological objects but about which many questions remain unanswered.
这个项目研究代数和拓扑之间的接口。我们学习同伦理论,即,代数结构的对称群即使在连续变形后也不改变的性质。该建议分为两部分。 第一种是当代数对象由域k上的向量空间组成时,没有额外的结构。在这种情况下,该结构对由n × n可逆矩阵组成的一般线性群GLn进行分组。我们研究了GLN的A1-同伦理论。A1-同伦是定义代数定义对象的同伦理论的一种强有力的方法。在这个理论中,首次建立在20世纪90年代末,人们认为这些变形可以由多项式函数定义。在经典同伦理论中,空间X的许多信息都被编码在它的同伦群pi_n(X)中,它记录了从球面到X的连续函数的不同同伦类。在A1-同伦中,可以类似地定义同伦群,但现在同伦的意义是A1-同伦。普通同伦群在大多数情况下是很难计算的,而A1-同伦群更是难以确定。GLn和相关空间的A1-同伦群以k的代数K-理论为幌子,编码了关于基础域k的微妙而神秘的信息,本提案将计算这些同伦群,以便提取和理解这些信息。我们将深入了解代数几何对象X上的向量丛理论与X的代数K理论的关系。我们还将学习更多关于球面自身的同伦群,因为群GLn是A1-同伦球面A^n-0的对称群。该提案的第二部分研究了当向量空间A具有附加结构(例如乘法)时会发生什么。那么A就是一个代数,一个数学中普遍存在的结构。对称性G受到A的乘法的限制,并且比没有乘法的情况更难理解。存在与(G,A)的数据相关联的特定几何空间:参数化A中元素的r元组的空间,这些空间足以生成A的整个代数结构。这些空间很少被研究,但因为它们是代数定义的,我们可以使用代数技巧来检查它们的普通同伦理论,从而方便了一些显式计算。这样,我们就能阐明对称群G和与A有关的代数结构。该项目将使用同伦理论来加深我们对几种不同类型的广泛使用的代数结构的基础知识:代数,代数与对合,代数对象上的向量丛,和字段(通过K理论)。它还将告诉我们更多关于球面之间映射的拓扑,球面是最基本的拓扑对象,但关于球面的许多问题仍然没有答案。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Williams, Thomas其他文献
Results from the second WHO external quality assessment for the molecular detection of respiratory syncytial virus, 2019-2020.
- DOI:
10.1111/irv.13073 - 发表时间:
2023-01 - 期刊:
- 影响因子:4.4
- 作者:
Williams, Thomas;Jackson, Sandra;Barr, Ian;Bi, Shabana;Bhiman, Jinal;Ellis, Joanna;von Gottberg, Anne;Lindstrom, Stephen;Peret, Teresa;Rughooputh, Sanjiv;Viegas, Mariana;Hirve, Siddhivinayak;Zambon, Maria;Zhang, Wenqing - 通讯作者:
Zhang, Wenqing
Effects of exercise and anti-PD-1 on the tumour microenvironment
- DOI:
10.1016/j.imlet.2021.08.005 - 发表时间:
2021-09-05 - 期刊:
- 影响因子:4.4
- 作者:
Buss, Linda A.;Williams, Thomas;Dachs, Gabi U. - 通讯作者:
Dachs, Gabi U.
Is a Total Hip Arthroplasty Stem in Varus a Risk Factor of Long-Term Mechanical Complication?
- DOI:
10.1016/j.arth.2022.12.025 - 发表时间:
2023-05-19 - 期刊:
- 影响因子:3.5
- 作者:
Montbarbon, Baptiste;Letissier, Hoel;Williams, Thomas - 通讯作者:
Williams, Thomas
Real-world experience of secukinumab treatment for ankylosing spondylitis at the Royal National Hospital for Rheumatic Diseases, Bath
- DOI:
10.1007/s10067-020-04944-5 - 发表时间:
2020-01-27 - 期刊:
- 影响因子:3.4
- 作者:
Williams, Thomas;Wadeley, Alison;Sengupta, Raj - 通讯作者:
Sengupta, Raj
Critical Assessment of an Ocular Photoscreener
- DOI:
10.3928/01913913-20170703-18 - 发表时间:
2018-05-01 - 期刊:
- 影响因子:1.2
- 作者:
Williams, Thomas;Morgan, Linda A.;Suh, Donny W. - 通讯作者:
Suh, Donny W.
Williams, Thomas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Williams, Thomas', 18)}}的其他基金
Classical and A1-homotopy theory of linear algebraic groups
线性代数群的经典和A1-同伦论
- 批准号:
RGPIN-2021-02603 - 财政年份:2021
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
The Topology, Geometry and Algebra of Projective Linear Groups
射影线性群的拓扑、几何和代数
- 批准号:
RGPIN-2016-03780 - 财政年份:2020
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
The Topology, Geometry and Algebra of Projective Linear Groups
射影线性群的拓扑、几何和代数
- 批准号:
RGPIN-2016-03780 - 财政年份:2019
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
The Topology, Geometry and Algebra of Projective Linear Groups
射影线性群的拓扑、几何和代数
- 批准号:
RGPIN-2016-03780 - 财政年份:2018
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
The Topology, Geometry and Algebra of Projective Linear Groups
射影线性群的拓扑、几何和代数
- 批准号:
RGPIN-2016-03780 - 财政年份:2017
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
The Topology, Geometry and Algebra of Projective Linear Groups
射影线性群的拓扑、几何和代数
- 批准号:
RGPIN-2016-03780 - 财政年份:2016
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
缺血/再灌注损伤视网膜中小胶质细胞线粒体病理性裂解诱导星形胶质细胞A1型极化的作用及机制研究
- 批准号:2025JJ50478
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于Notch信号通路研究A1星形胶质细胞参与大鼠骨癌痛的机制
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
膜联蛋白A1/甲酰肽受体1轴调控脓毒症
脑病泛凋亡的分子机制研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
基于肠道芯片探讨双埃可病毒A1型相关
腹泻病的分子机制及其流行病学研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
三磷酸腺苷结合盒转运体A1参与调控睑
板腺脂质代谢的机制研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
巴弗洛霉素A1通过抑制Lamp-1介导的BCR信号通路提高淋巴瘤化疗
敏感性的机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
A1型星形胶质细胞分泌sEV通过PTBP1/TEAD2轴诱发NSC囊老致POCD的机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:地区科学基金项目
血清淀粉样蛋白A1对呼吸道变应性炎症巨噬细胞的免疫调控作用及机制
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
METTL1乳酸化修饰抑制丙酮酸脱氢酶A1(PDHA1)m7GX水平重塑心肌糖代谢在HFpEF中的作用及机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:青年科学基金项目
强效抗肿瘤角环素型糖苷 Vineomycin A1 的全合成及构效关系研究
- 批准号:24ZR1478900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
A1-Homotopy Theory and Applications to Enumerative Geometry and Number Theory
A1-同伦理论及其在枚举几何和数论中的应用
- 批准号:
2405191 - 财政年份:2024
- 资助金额:
$ 1.53万 - 项目类别:
Standard Grant
EphA2/ephrin-A1を介したPD-L1発現調節機構の解明と臨床応用への模索
阐明EphA2/ephrin-A1介导的PD-L1表达调控机制并探索临床应用
- 批准号:
24K10437 - 财政年份:2024
- 资助金额:
$ 1.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
下垂体のアネキシンA1およびA5に関連する遺伝子発現の網羅的シングルセル解析
垂体膜联蛋白 A1 和 A5 相关基因表达的综合单细胞分析
- 批准号:
24K09254 - 财政年份:2024
- 资助金额:
$ 1.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Allostery-driven G protein selectivity in the adenosine A1 receptor
腺苷 A1 受体中变构驱动的 G 蛋白选择性
- 批准号:
BB/W016974/1 - 财政年份:2023
- 资助金额:
$ 1.53万 - 项目类别:
Research Grant
Neural networks in chronic pain via the locus coeruleus and A1/A2 noradrenergic nucleus
通过蓝斑和 A1/A2 去甲肾上腺素能核的慢性疼痛神经网络
- 批准号:
23K08401 - 财政年份:2023
- 资助金额:
$ 1.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The role of A1 adenosine receptor signaling in the decline of S. pneumoniae killing by neutrophils in vaccinated aged hosts
A1 腺苷受体信号传导在疫苗接种老年宿主中中性粒细胞杀伤肺炎链球菌下降中的作用
- 批准号:
10605737 - 财政年份:2023
- 资助金额:
$ 1.53万 - 项目类别:
Targeting Blood-CNS-Barrier in ALS via Apolipoprotein A1
通过载脂蛋白 A1 靶向 ALS 中的血液中枢神经系统屏障
- 批准号:
10680237 - 财政年份:2023
- 资助金额:
$ 1.53万 - 项目类别:
The Total Chemoenzymatic Synthesis of Nargenicin A1 and Family Members
蛇烟素 A1 及其家族成员的全化学酶法合成
- 批准号:
567717-2022 - 财政年份:2022
- 资助金额:
$ 1.53万 - 项目类别:
Postgraduate Scholarships - Doctoral
Advancing the Understanding of Protein-Protein Molecular Recognition Mechanisms Through the Use of Immunoglobulin A1 Proteases as Model Enzyme Systems
通过使用免疫球蛋白 A1 蛋白酶作为模型酶系统促进对蛋白质-蛋白质分子识别机制的理解
- 批准号:
558729-2021 - 财政年份:2022
- 资助金额:
$ 1.53万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Allostery-driven G protein selectivity in the adenosine A1 receptor
腺苷 A1 受体中变构驱动的 G 蛋白选择性
- 批准号:
BB/W014831/1 - 财政年份:2022
- 资助金额:
$ 1.53万 - 项目类别:
Research Grant