The Topology, Geometry and Algebra of Projective Linear Groups

射影线性群的拓扑、几何和代数

基本信息

  • 批准号:
    RGPIN-2016-03780
  • 负责人:
  • 金额:
    $ 1.97万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

An Azumaya algebra is a twisted form of a matrix algebra. Since matrices themselves are ubiquitous, these objects exist and are noteworthy in different mathematical contexts.***In the context of algebras over a field, an Azumaya algebra is simply an algebra that becomes isomorphic to a matrix algebra upon extension to some (separable) algebraic extension. The prototypical example here is Hamilton's Quaternions over the real field, which becomes isomorphic to 2x2 complex matrices upon extension to the complex field. Azumaya algebras over fields are the Central Simple Algebras of classical importance.****In the topological context, an Azumaya algebra over a space X is a family of algebras parametrized by X that is locally isomorphic to the trivial family of nxn complex matrices.*** Intermediate between the two contexts above is that of Azumaya algebras over varieties, since varieties straddle the worlds of topological spaces and of algebras over fields.******This project aims to bring topological tools applicable to Azumaya algebras over topological spaces to bear in specific cases that relate to arithmetic or algebraic questions, and consequently to furnish a stream of examples and counterexamples. These examples will help to refine the study of Azumaya algebras in the algebraic context by either disproving or supporting existing conjectures, and by providing a guide to the behaviour one expects over high-dimensional varieties and their function fields, which can be hard to address directly using algebraic techniques.***It also aims to transpose the calculations made in the topological context to an algebraic context, via etale cohomology and A1 or motivic homotopy theories, and to establish positive results in the algebraic theory by this method.**
Azumaya代数是矩阵代数的扭曲形式。由于矩阵本身是无处不在的,这些对象在不同的数学环境中存在并值得注意。在域上的代数的上下文中,Azumaya代数只是一个代数,它在扩展到某个(可分)代数扩展时同构于矩阵代数。这里的典型例子是真实的域上的汉密尔顿四元数,它在扩展到复数域时同构于2 × 2的复数矩阵。域上的Azumaya代数是具有经典重要性的中心单代数。在拓扑学中,空间X上的Azumaya代数是由X参数化的代数族,其局部同构于平凡的nxn复矩阵族。介于上述两种背景之间的是簇上的Azumaya代数,因为簇横跨拓扑空间和域上的代数的世界。这个项目的目的是使拓扑工具适用于Azumaya代数拓扑空间承担在特定情况下,涉及算术或代数问题,从而提供了一系列的例子和反例。这些例子将有助于改进Azumaya代数在代数背景下的研究,通过反驳或支持现有的假设,并通过提供一个指导,人们期望在高维簇及其函数域上的行为,这可能很难直接使用代数技术来解决。它还旨在通过Eale上同调和A1或motivic同伦理论,将在拓扑背景下进行的计算转置到代数背景下,并通过这种方法在代数理论中建立积极的结果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Williams, Thomas其他文献

Results from the second WHO external quality assessment for the molecular detection of respiratory syncytial virus, 2019-2020.
  • DOI:
    10.1111/irv.13073
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Williams, Thomas;Jackson, Sandra;Barr, Ian;Bi, Shabana;Bhiman, Jinal;Ellis, Joanna;von Gottberg, Anne;Lindstrom, Stephen;Peret, Teresa;Rughooputh, Sanjiv;Viegas, Mariana;Hirve, Siddhivinayak;Zambon, Maria;Zhang, Wenqing
  • 通讯作者:
    Zhang, Wenqing
Effects of exercise and anti-PD-1 on the tumour microenvironment
  • DOI:
    10.1016/j.imlet.2021.08.005
  • 发表时间:
    2021-09-05
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Buss, Linda A.;Williams, Thomas;Dachs, Gabi U.
  • 通讯作者:
    Dachs, Gabi U.
Is a Total Hip Arthroplasty Stem in Varus a Risk Factor of Long-Term Mechanical Complication?
  • DOI:
    10.1016/j.arth.2022.12.025
  • 发表时间:
    2023-05-19
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Montbarbon, Baptiste;Letissier, Hoel;Williams, Thomas
  • 通讯作者:
    Williams, Thomas
Real-world experience of secukinumab treatment for ankylosing spondylitis at the Royal National Hospital for Rheumatic Diseases, Bath
  • DOI:
    10.1007/s10067-020-04944-5
  • 发表时间:
    2020-01-27
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Williams, Thomas;Wadeley, Alison;Sengupta, Raj
  • 通讯作者:
    Sengupta, Raj
Critical Assessment of an Ocular Photoscreener

Williams, Thomas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Williams, Thomas', 18)}}的其他基金

Classical and A1-homotopy theory of linear algebraic groups
线性代数群的经典和A1-同伦论
  • 批准号:
    RGPIN-2021-02603
  • 财政年份:
    2022
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Classical and A1-homotopy theory of linear algebraic groups
线性代数群的经典和A1-同伦论
  • 批准号:
    RGPIN-2021-02603
  • 财政年份:
    2021
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
The Topology, Geometry and Algebra of Projective Linear Groups
射影线性群的拓扑、几何和代数
  • 批准号:
    RGPIN-2016-03780
  • 财政年份:
    2020
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
The Topology, Geometry and Algebra of Projective Linear Groups
射影线性群的拓扑、几何和代数
  • 批准号:
    RGPIN-2016-03780
  • 财政年份:
    2019
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
The Topology, Geometry and Algebra of Projective Linear Groups
射影线性群的拓扑、几何和代数
  • 批准号:
    RGPIN-2016-03780
  • 财政年份:
    2017
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
The Topology, Geometry and Algebra of Projective Linear Groups
射影线性群的拓扑、几何和代数
  • 批准号:
    RGPIN-2016-03780
  • 财政年份:
    2016
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
  • 批准号:
    11981240404
  • 批准年份:
    2019
  • 资助金额:
    1.5 万元
  • 项目类别:
    国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
  • 批准号:
    20602003
  • 批准年份:
    2006
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
  • 批准号:
    24K06659
  • 财政年份:
    2024
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
  • 批准号:
    2414922
  • 财政年份:
    2024
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Standard Grant
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
  • 批准号:
    2314082
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Standard Grant
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
  • 批准号:
    2203785
  • 财政年份:
    2022
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Standard Grant
Combinatorial Representation Theory: Discovering the Interfaces of Algebra with Geometry and Topology
组合表示理论:发现代数与几何和拓扑的接口
  • 批准号:
    EP/W007509/1
  • 财政年份:
    2022
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Research Grant
Categorical algebra in analysis, geometry, and topology
分析、几何和拓扑中的分类代数
  • 批准号:
    RGPIN-2019-05274
  • 财政年份:
    2022
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Workshops in Spectral Methods in Algebra, Geometry, and Topology
代数、几何和拓扑谱方法研讨会
  • 批准号:
    2230159
  • 财政年份:
    2022
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Standard Grant
CAREER: The Algebra, Geometry, and Topology of Infinite Surfaces
职业:无限曲面的代数、几何和拓扑
  • 批准号:
    2046889
  • 财政年份:
    2021
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Continuing Grant
Topology and Linear Algebra in Discrete Geometry
离散几何中的拓扑和线性代数
  • 批准号:
    2054419
  • 财政年份:
    2021
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Standard Grant
Geometric Representation Theory: Interface of Algebra, Geometry and Topology.
几何表示理论:代数、几何和拓扑的接口。
  • 批准号:
    2596547
  • 财政年份:
    2021
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了