Amenability properties of semitopological semigroups and related Banach algebras
半拓扑半群和相关巴纳赫代数的顺应性性质
基本信息
- 批准号:RGPIN-2022-04137
- 负责人:
- 金额:$ 1.31万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
My team and I propose to investigate amenability properties of semi-topological semigroups, centering on how they determine the common fixed point property of the semigroup and how they decide the structure of a related Banach algebra. This is a constitutive component of our long-term objective. For the latter, we aim to integrate ideas/methods in developing the topological group/semigroup theory and the Banach algebra theory. We engage in revealing deep links between the two areas. Amenability theory for groups may trace back to the 1920s when J. von Neumann, studying the Banach-Tarski paradox, raised the question of whether there is an invariant measure for a group acting on certain sets. M.M. Day laid down the foundation of the theory in the 1950s. During the past 70 years, the investigation has been interacting fruitfully with harmonic analysis and Banach algebra theory, giving rise to many beautiful and profound results in the area. The amenability property of a semi-topological semigroup S is expounded in terms of the existence of a left-invariant mean on a subspace of continuous functions on S. When S acts on a topological space, its amenability property determines many features of the action. There are various types of semigroup actions. Among them, affine actions and non-expansive actions are of extreme importance to many analysis areas. These types of actions of S on a weakly compact or weak* compact set of a Banach space are of particular interest, with several long-standing open problems in the background. We will focus on the common fixed point properties of S for such actions, investigating intrinsic relations linking these to the amenability properties of S. After a pioneering work of B.E. Johnson in the 1970s, amenability theory has been extended to the area of Banach algebras, providing inspiring ideas to probe the structure of a Banach algebra. On the other hand, amenability is a very restrictive condition for a Banach algebra. In recent years, generalized/weak versions of amenability for Banach algebras have been introduced in the literature. Regarding them, many crucial problems are pending an intensive investigation. We will concentrate on the problems concerning Banach algebras related to groups and semigroups in this proposal. In particular, we will investigate the weighted group and measure algebras and their center algebras, and weighted measure algebras of semigroups. We will further investigate the class of F-algebras, which includes many important Banach algebras arising from the harmonic analysis. The proposed research will contribute to developing the theory of Banach algebras, harmonic analysis, and general functional analysis. The outcome will have foreseeable applications in dynamic systems, ergodic theory, and approximation theory. Participating in the research, trainees will gain fundamental knowledge and skills in functional analysis that will greatly benefit their future research-related careers.
我和我的团队提议研究半主流半群的舒适性特性,以他们如何确定半群的共同固定点特性以及他们如何确定相关Banach代数的结构。这是我们长期目标的组成部分。对于后者,我们旨在将思想/方法整合到发展拓扑组/半群理论和Banach代数理论中。我们参与了这两个领域之间的深层联系。群体的不及性理论可以追溯到1920年代,当时研究Banach-Tarski悖论的J. von Neumann提出了一个问题,即是否存在对某些集合作用的群体的不变度量。毫米。一天奠定了1950年代理论的基础。在过去的70年中,该调查一直在与谐波分析和Banach代数理论中进行有效的互动,从而在该地区带来了许多美丽而深刻的结果。半流行病学的符合性特性是根据存在于连续函数的子空间上的剩余平均值的存在来阐述的。有多种类型的半群动作。其中,对许多分析领域的仿射行动和非表达行为至关重要。 S在弱紧凑或弱*紧凑的Banach空间集中的这些类型的动作特别感兴趣,背景中有几个长期存在的开放问题。我们将重点介绍S用于此类作用的常见固定点特性,并研究将这些固有关系与S.的固有关系联系起来。约翰逊(Johnson)在1970年代,舒适性理论已扩展到巴纳克代数的地区,提供了鼓舞人心的想法来探究巴纳克代数的结构。另一方面,对BANACH代数是非常限制的条件。近年来,文献中引入了Banach代数的普遍/弱版本。关于他们,许多关键问题正在进行深入的调查。我们将集中精力于本提案中与群体和半群有关的Banach代数的问题。特别是,我们将研究加权组并测量代数及其中心代数,并加权测量半群的代数。我们将进一步研究F-Elgebras的类别,其中包括许多由谐波分析引起的重要BANACH代数。拟议的研究将有助于发展Banach代数,谐波分析和一般功能分析的理论。该结果将在动态系统,千古理论和近似理论中具有可预见的应用。参与研究,学员将获得基本知识和技能,以极大地使他们未来的研究相关职业受益。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhang, Yong其他文献
Autophagy and the degradation of mitochondria.
- DOI:
10.1016/j.mito.2010.01.005 - 发表时间:
2010-06 - 期刊:
- 影响因子:4.4
- 作者:
Goldman, Scott J.;Taylor, Robert;Zhang, Yong;Jin, Shengkan - 通讯作者:
Jin, Shengkan
The unified image cryptography algorithm based on finite group
- DOI:
10.1016/j.eswa.2022.118655 - 发表时间:
2022-09-07 - 期刊:
- 影响因子:8.5
- 作者:
Zhang, Yong;Chen, Aiguo;Chen, Wei - 通讯作者:
Chen, Wei
Does SARS-CoV-2 infection cause persistent ocular symptoms?: A cross-sectional study after the lifting of lockdown in Chongqing, China.
- DOI:
10.1097/md.0000000000036798 - 发表时间:
2023-12-22 - 期刊:
- 影响因子:1.6
- 作者:
Li, Ruili;Zhang, Jing;Zhang, Yong;Wang, Lihua;Qi, Xiaoya;Chen, Yao - 通讯作者:
Chen, Yao
Computational Investigations of Heme Carbenes and Heme Carbene Transfer Reactions
- DOI:
10.1002/chem.201901984 - 发表时间:
2019-08-23 - 期刊:
- 影响因子:4.3
- 作者:
Zhang, Yong - 通讯作者:
Zhang, Yong
Ag-decorated Fe3O4@SiO2 core-shell nanospheres: Seed-mediated growth preparation and their antibacterial activity during the consecutive recycling
Ag修饰的Fe3O4@SiO2核壳纳米球:种子介导的生长制备及其在连续回收过程中的抗菌活性
- DOI:
10.1016/j.jallcom.2016.03.191 - 发表时间:
2016-08-15 - 期刊:
- 影响因子:6.2
- 作者:
Li, Miaomiao;Wu, Wenjie;Zhang, Yong - 通讯作者:
Zhang, Yong
Zhang, Yong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhang, Yong', 18)}}的其他基金
Amenability properties and related problems of Banach algebras associated to groups and semigroups
与群和半群相关的 Banach 代数的顺应性性质和相关问题
- 批准号:
RGPIN-2016-05987 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Amenability properties and related problems of Banach algebras associated to groups and semigroups
与群和半群相关的 Banach 代数的顺应性性质和相关问题
- 批准号:
RGPIN-2016-05987 - 财政年份:2020
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Amenability properties and related problems of Banach algebras associated to groups and semigroups
与群和半群相关的 Banach 代数的顺应性性质和相关问题
- 批准号:
RGPIN-2016-05987 - 财政年份:2019
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Amenability properties and related problems of Banach algebras associated to groups and semigroups
与群和半群相关的 Banach 代数的顺应性性质和相关问题
- 批准号:
RGPIN-2016-05987 - 财政年份:2018
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Amenability properties and related problems of Banach algebras associated to groups and semigroups
与群和半群相关的 Banach 代数的顺应性性质和相关问题
- 批准号:
RGPIN-2016-05987 - 财政年份:2017
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Amenability properties and related problems of Banach algebras associated to groups and semigroups
与群和半群相关的 Banach 代数的顺应性性质和相关问题
- 批准号:
RGPIN-2016-05987 - 财政年份:2016
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Cohomology in Banach algebras and amenability properties of semigroups
Banach代数中的上同调和半群的顺从性
- 批准号:
238949-2011 - 财政年份:2015
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Cohomology in Banach algebras and amenability properties of semigroups
Banach代数中的上同调和半群的顺从性
- 批准号:
238949-2011 - 财政年份:2014
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Cohomology in Banach algebras and amenability properties of semigroups
Banach代数中的上同调和半群的顺从性
- 批准号:
238949-2011 - 财政年份:2013
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Cohomology in Banach algebras and amenability properties of semigroups
Banach代数中的上同调和半群的顺从性
- 批准号:
238949-2011 - 财政年份:2012
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
长持续特性水文序列建模与预测研究
- 批准号:52379026
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
联合连续弛豫时间分布与物理阻抗模型的锂离子电池极化特性演变分析方法
- 批准号:22309205
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
梯度亲钠纳米结构堆用高温热管复合吸液芯的吸钠铺展及传热特性研究
- 批准号:12305174
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
空位缺陷调控的氮掺杂ZnO薄膜中受主形成机制与导电特性研究
- 批准号:12304102
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
强相互作用两组份费米体系超冷三体碰撞特性的理论研究
- 批准号:12374235
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
A Novel Surrogate Framework for evaluating THM Properties of Bentonite
评估膨润土 THM 性能的新型替代框架
- 批准号:
DP240102053 - 财政年份:2024
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Projects
炭素線のRBEにより近い特性を有するゲル線量計の開発
开发具有更接近碳射线RBE特性的凝胶剂量计
- 批准号:
24K15597 - 财政年份:2024
- 资助金额:
$ 1.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
脳へ移行するグルコースの特性から着想を得た、脳へ薬物を輸送する新技術の開発
受转移到大脑的葡萄糖特性的启发,开发了将药物输送到大脑的新技术
- 批准号:
24K15748 - 财政年份:2024
- 资助金额:
$ 1.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
産後1ヵ月のうつ症状の母親に特化した母子関係性促進に向けた早期介入プログラム開発
制定一项早期干预计划,专门针对产后一个月有抑郁症状的母亲,促进母婴关系
- 批准号:
24K13970 - 财政年份:2024
- 资助金额:
$ 1.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
特定行為研修「在宅・慢性期領域」における実装科学を活用した地域の取組の推進と評価
在特定行为培训“家庭/慢性阶段区域”中利用实施科学来促进和评估当地举措
- 批准号:
24K14143 - 财政年份:2024
- 资助金额:
$ 1.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)