Amenability properties of semitopological semigroups and related Banach algebras
半拓扑半群和相关巴纳赫代数的顺应性性质
基本信息
- 批准号:RGPIN-2022-04137
- 负责人:
- 金额:$ 1.31万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
My team and I propose to investigate amenability properties of semi-topological semigroups, centering on how they determine the common fixed point property of the semigroup and how they decide the structure of a related Banach algebra. This is a constitutive component of our long-term objective. For the latter, we aim to integrate ideas/methods in developing the topological group/semigroup theory and the Banach algebra theory. We engage in revealing deep links between the two areas. Amenability theory for groups may trace back to the 1920s when J. von Neumann, studying the Banach-Tarski paradox, raised the question of whether there is an invariant measure for a group acting on certain sets. M.M. Day laid down the foundation of the theory in the 1950s. During the past 70 years, the investigation has been interacting fruitfully with harmonic analysis and Banach algebra theory, giving rise to many beautiful and profound results in the area. The amenability property of a semi-topological semigroup S is expounded in terms of the existence of a left-invariant mean on a subspace of continuous functions on S. When S acts on a topological space, its amenability property determines many features of the action. There are various types of semigroup actions. Among them, affine actions and non-expansive actions are of extreme importance to many analysis areas. These types of actions of S on a weakly compact or weak* compact set of a Banach space are of particular interest, with several long-standing open problems in the background. We will focus on the common fixed point properties of S for such actions, investigating intrinsic relations linking these to the amenability properties of S. After a pioneering work of B.E. Johnson in the 1970s, amenability theory has been extended to the area of Banach algebras, providing inspiring ideas to probe the structure of a Banach algebra. On the other hand, amenability is a very restrictive condition for a Banach algebra. In recent years, generalized/weak versions of amenability for Banach algebras have been introduced in the literature. Regarding them, many crucial problems are pending an intensive investigation. We will concentrate on the problems concerning Banach algebras related to groups and semigroups in this proposal. In particular, we will investigate the weighted group and measure algebras and their center algebras, and weighted measure algebras of semigroups. We will further investigate the class of F-algebras, which includes many important Banach algebras arising from the harmonic analysis. The proposed research will contribute to developing the theory of Banach algebras, harmonic analysis, and general functional analysis. The outcome will have foreseeable applications in dynamic systems, ergodic theory, and approximation theory. Participating in the research, trainees will gain fundamental knowledge and skills in functional analysis that will greatly benefit their future research-related careers.
我和我的团队建议研究半拓扑半群的顺从性,重点是它们如何确定半群的公共不动点性质以及它们如何决定相关的Banach代数的结构。这是我们长期目标的组成部分。对于后者,我们的目标是将拓扑群/半群理论和Banach代数理论的思想/方法结合起来。我们致力于揭示这两个领域之间的深刻联系。群的顺从性理论可以追溯到20世纪20年代,当时J.von Neumann在研究Banach-Tarski悖论时提出了这样一个问题:对于作用在特定集合上的群,是否存在不变度量。M.M.戴在20世纪50年代奠定了这一理论的基础。在过去的70年里,调和分析和Banach代数理论的研究取得了丰硕的成果,在这个领域产生了许多美丽而深刻的结果。利用S上连续函数子空间上左不变平均的存在性,证明了半拓扑半群S的顺从性.当S作用在一个拓扑空间上时,它的顺从性决定了作用的许多特征.有各种类型的半群作用。其中,仿射作用和非扩张作用对许多分析领域都具有极其重要的意义。S在Banach空间的弱紧或弱*紧集合上的这类作用引起了特别的兴趣,其中有几个长期悬而未决的问题。我们将重点研究S在这种作用下的公共不动点性质,研究这些性质与S的顺从性之间的内在联系。在B.E.Johnson于20世纪70年代的一项开创性工作之后,顺从性理论已经扩展到Banach代数领域,为探索Banach代数的结构提供了灵感。另一方面,对于Banach代数来说,顺从性是一个非常严格的条件。近年来,已有文献介绍了Banach代数的广义/弱形式的顺从性。关于这些问题,许多关键问题有待深入调查。在这个方案中,我们将集中讨论与群和半群有关的Banach代数的问题。特别地,我们将研究半群的加权群和测度代数及其中心代数,以及加权测度代数。我们将进一步研究F-代数类,其中包括调和分析产生的许多重要的Banach代数。所提出的研究将有助于发展Banach代数理论、调和分析和一般泛函分析。这一结果将在动力系统、遍历理论和近似理论中有可预见的应用。参与研究,学员将获得泛函分析的基本知识和技能,这将极大地帮助他们未来的研究相关职业。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhang, Yong其他文献
Atmospheric observations suggest methane emissions in north-eastern China growing with natural gas use.
- DOI:
10.1038/s41598-022-19462-4 - 发表时间:
2022-11-17 - 期刊:
- 影响因子:4.6
- 作者:
Wang, Fenjuan;Maksyutov, Shamil;Janardanan, Rajesh;Tsuruta, Aki;Ito, Akihiko;Morino, Isamu;Yoshida, Yukio;Tohjima, Yasunori;Kaiser, Johannes W.;Lan, Xin;Zhang, Yong;Mammarella, Ivan;Lavric, Jost, V;Matsunaga, Tsuneo - 通讯作者:
Matsunaga, Tsuneo
Exploring the Action Mechanism of the Active Ingredient of Quercetin in Ligustrum lucidum on the Mouse Mastitis Model Based on Network Pharmacology and Molecular Biology Validation.
- DOI:
10.1155/2022/4236222 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Cao, Lu;Wang, Tao;Mi, XiaoYu;Ji, Peng;Zhao, XingXu;Zhang, Yong - 通讯作者:
Zhang, Yong
Fluorescence-guided surgery improves outcome in an orthotopic osteosarcoma nude-mouse model.
- DOI:
10.1002/jor.22706 - 发表时间:
2014-12 - 期刊:
- 影响因子:2.8
- 作者:
Miwa, Shinji;Hiroshima, Yukihiko;Yano, Shuya;Zhang, Yong;Matsumoto, Yasunori;Uehara, Fuminari;Yamamoto, Mako;Kimura, Hiroaki;Hayashi, Katsuhiro;Bouvet, Michael;Tsuchiya, Hiroyuki;Hoffman, Robert M. - 通讯作者:
Hoffman, Robert M.
Altered static and dynamic functional connectivity of habenula in first-episode, drug-naïve schizophrenia patients, and their association with symptoms including hallucination and anxiety.
- DOI:
10.3389/fpsyt.2023.1078779 - 发表时间:
2023 - 期刊:
- 影响因子:4.7
- 作者:
Xue, Kangkang;Chen, Jingli;Wei, Yarui;Chen, Yuan;Han, Shaoqiang;Wang, Caihong;Zhang, Yong;Song, Xueqin;Cheng, Jingliang - 通讯作者:
Cheng, Jingliang
Bayesian Analysis of Climate Change Effects on Observed and Projected Airborne Levels of Birch Pollen.
- DOI:
10.1016/j.atmosenv.2012.11.028 - 发表时间:
2013-04-01 - 期刊:
- 影响因子:5
- 作者:
Zhang, Yong;Isukapalli, Sastry S.;Bielory, Leonard;Georgopoulos, Panos G. - 通讯作者:
Georgopoulos, Panos G.
Zhang, Yong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhang, Yong', 18)}}的其他基金
Amenability properties and related problems of Banach algebras associated to groups and semigroups
与群和半群相关的 Banach 代数的顺应性性质和相关问题
- 批准号:
RGPIN-2016-05987 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Amenability properties and related problems of Banach algebras associated to groups and semigroups
与群和半群相关的 Banach 代数的顺应性性质和相关问题
- 批准号:
RGPIN-2016-05987 - 财政年份:2020
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Amenability properties and related problems of Banach algebras associated to groups and semigroups
与群和半群相关的 Banach 代数的顺应性性质和相关问题
- 批准号:
RGPIN-2016-05987 - 财政年份:2019
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Amenability properties and related problems of Banach algebras associated to groups and semigroups
与群和半群相关的 Banach 代数的顺应性性质和相关问题
- 批准号:
RGPIN-2016-05987 - 财政年份:2018
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Amenability properties and related problems of Banach algebras associated to groups and semigroups
与群和半群相关的 Banach 代数的顺应性性质和相关问题
- 批准号:
RGPIN-2016-05987 - 财政年份:2017
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Amenability properties and related problems of Banach algebras associated to groups and semigroups
与群和半群相关的 Banach 代数的顺应性性质和相关问题
- 批准号:
RGPIN-2016-05987 - 财政年份:2016
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Cohomology in Banach algebras and amenability properties of semigroups
Banach代数中的上同调和半群的顺从性
- 批准号:
238949-2011 - 财政年份:2015
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Cohomology in Banach algebras and amenability properties of semigroups
Banach代数中的上同调和半群的顺从性
- 批准号:
238949-2011 - 财政年份:2014
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Cohomology in Banach algebras and amenability properties of semigroups
Banach代数中的上同调和半群的顺从性
- 批准号:
238949-2011 - 财政年份:2013
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Cohomology in Banach algebras and amenability properties of semigroups
Banach代数中的上同调和半群的顺从性
- 批准号:
238949-2011 - 财政年份:2012
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
镍基UNS N10003合金辐照位错环演化机制及其对力学性能的影响研究
- 批准号:12375280
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
聚合铁-腐殖酸混凝沉淀-絮凝调质过程中絮体污泥微界面特性和群体流变学的研究
- 批准号:20977008
- 批准年份:2009
- 资助金额:34.0 万元
- 项目类别:面上项目
层状钴基氧化物热电材料的组织取向度与其性能关联规律研究
- 批准号:50702003
- 批准年份:2007
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A Novel Surrogate Framework for evaluating THM Properties of Bentonite
评估膨润土 THM 性能的新型替代框架
- 批准号:
DP240102053 - 财政年份:2024
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Projects
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 1.31万 - 项目类别:
Training Grant
Collaborative Research: Compositionally and Structurally Modulated Ferroelastic Films for Unprecedented Superelastic Properties
合作研究:成分和结构调制的铁弹性薄膜,具有前所未有的超弹性特性
- 批准号:
2333551 - 财政年份:2024
- 资助金额:
$ 1.31万 - 项目类别:
Continuing Grant
Polynomial Interpolation, Symmetric Ideals, and Lefschetz Properties
多项式插值、对称理想和 Lefschetz 属性
- 批准号:
2401482 - 财政年份:2024
- 资助金额:
$ 1.31万 - 项目类别:
Continuing Grant
Electronic, transport and topological properties of frustrated magnets
受挫磁体的电子、输运和拓扑特性
- 批准号:
2403804 - 财政年份:2024
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant
RUI: Investigating the Covalency of Intermolecular Interactions and its Effect on the Properties of Supramolecular Complexes.
RUI:研究分子间相互作用的共价性及其对超分子复合物性质的影响。
- 批准号:
2404011 - 财政年份:2024
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
- 批准号:
2341238 - 财政年份:2024
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant
Characterization of the distribution and properties of inert copper in seawater
海水中惰性铜的分布和性质表征
- 批准号:
2343416 - 财政年份:2024
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant
CRII: CPS: FAICYS: Model-Based Verification for AI-Enabled Cyber-Physical Systems Through Guided Falsification of Temporal Logic Properties
CRII:CPS:FAICYS:通过时态逻辑属性的引导伪造,对支持人工智能的网络物理系统进行基于模型的验证
- 批准号:
2347294 - 财政年份:2024
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant
Exploring the contribution of cell wall components and osmotic pressure to mechanical properties that enable root growth
探索细胞壁成分和渗透压对促进根系生长的机械性能的贡献
- 批准号:
24K17868 - 财政年份:2024
- 资助金额:
$ 1.31万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




