Amenability properties and related problems of Banach algebras associated to groups and semigroups

与群和半群相关的 Banach 代数的顺应性性质和相关问题

基本信息

  • 批准号:
    RGPIN-2016-05987
  • 负责人:
  • 金额:
    $ 1.09万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

The proposed research deals with semitopological semigroups, topological groups and Banach algebras associated to them. We investigate different amenability properties of these objects and study various group/semigroup actions on subsets of a Banach space or a locally convex space. Amenability theory for groups may trace back to 1920's when J. von Neumann investigated the Banach-Taski paradox and raised the general question of whether there is an invariant measure for a group acting on certain sets. M. M. Day laid down the foundation of the theory for semigroups in 1950's. Since then the amenability theory for groups and semigroups has interacted fruitfully with Banach algebra theory, giving rise to many beautiful and deep results regarding the structure of groups/semigroups and the property of related spaces/algebras. B.E. Johnson discovered the relation between amenability of a group and the cohomology property of the corresponding group algebra. He then established the amenability theory for Banach algebras in 1970's. After his pioneer work, weak amenability, operator amenability, weak operator amenability and generalized amenability for Banach algebras have been established and extensively investigated. How these amenabilities (for Banach algebras) reflect properties of related groups and semigroups is a profound question in the area. Centered around this question there is a list of open problems that involve various Banach algebras associated to groups or semigroups. We will focus on weighted group algebras, weighted semigroups algebras and F-algebras to investigate these amenabilities. The topics on Banach algebras associated to groups and semigroups are closely related to the theory of group/semigroup actions on subsets of Banach or, more generally, locally convex topological spaces. There are variety types of group/semigroup actions on a set of a locally convex space. Among them affine actions and non-expansive actions are of extreme importance to many analysis areas. Studying these actions provides keys to better understanding of the spaces on which the groups/semigroups act. We will concentrate on fixed point properties for affine or non-expansive semigroup actions on two types of sets: (1) weakly or weak* compact sets of a Banach or a dual Banach space, and (2) subsets of a strictly convex Banach space or a Hilbert space. In addition to the expected theoretical contributions to Banach algebra, harmonic analysis and fixed point theories, the research will have applications in dynamic systems, ergodic theory and approximation theory. The program provides a great opportunity for graduate students at both PhD and Master's levels to choose topics for their thesis. It is also suitable for a postdoctoral fellow who wishes to do significant research. We plan to train a few graduate students under the program, and we will provide postdoctoral positions in carrying out the program.
提出的研究涉及半拓扑半群,拓扑群和与其相关的巴拿赫代数。我们研究了这些对象的不同顺应性,并研究了在Banach空间和局部凸空间的子集上的群/半群作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhang, Yong其他文献

Atmospheric observations suggest methane emissions in north-eastern China growing with natural gas use.
  • DOI:
    10.1038/s41598-022-19462-4
  • 发表时间:
    2022-11-17
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Wang, Fenjuan;Maksyutov, Shamil;Janardanan, Rajesh;Tsuruta, Aki;Ito, Akihiko;Morino, Isamu;Yoshida, Yukio;Tohjima, Yasunori;Kaiser, Johannes W.;Lan, Xin;Zhang, Yong;Mammarella, Ivan;Lavric, Jost, V;Matsunaga, Tsuneo
  • 通讯作者:
    Matsunaga, Tsuneo
Exploring the Action Mechanism of the Active Ingredient of Quercetin in Ligustrum lucidum on the Mouse Mastitis Model Based on Network Pharmacology and Molecular Biology Validation.
Fluorescence-guided surgery improves outcome in an orthotopic osteosarcoma nude-mouse model.
  • DOI:
    10.1002/jor.22706
  • 发表时间:
    2014-12
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Miwa, Shinji;Hiroshima, Yukihiko;Yano, Shuya;Zhang, Yong;Matsumoto, Yasunori;Uehara, Fuminari;Yamamoto, Mako;Kimura, Hiroaki;Hayashi, Katsuhiro;Bouvet, Michael;Tsuchiya, Hiroyuki;Hoffman, Robert M.
  • 通讯作者:
    Hoffman, Robert M.
Altered static and dynamic functional connectivity of habenula in first-episode, drug-naïve schizophrenia patients, and their association with symptoms including hallucination and anxiety.
  • DOI:
    10.3389/fpsyt.2023.1078779
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Xue, Kangkang;Chen, Jingli;Wei, Yarui;Chen, Yuan;Han, Shaoqiang;Wang, Caihong;Zhang, Yong;Song, Xueqin;Cheng, Jingliang
  • 通讯作者:
    Cheng, Jingliang
Bayesian Analysis of Climate Change Effects on Observed and Projected Airborne Levels of Birch Pollen.
  • DOI:
    10.1016/j.atmosenv.2012.11.028
  • 发表时间:
    2013-04-01
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Zhang, Yong;Isukapalli, Sastry S.;Bielory, Leonard;Georgopoulos, Panos G.
  • 通讯作者:
    Georgopoulos, Panos G.

Zhang, Yong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhang, Yong', 18)}}的其他基金

Amenability properties of semitopological semigroups and related Banach algebras
半拓扑半群和相关巴纳赫代数的顺应性性质
  • 批准号:
    RGPIN-2022-04137
  • 财政年份:
    2022
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Amenability properties and related problems of Banach algebras associated to groups and semigroups
与群和半群相关的 Banach 代数的顺应性性质和相关问题
  • 批准号:
    RGPIN-2016-05987
  • 财政年份:
    2021
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Amenability properties and related problems of Banach algebras associated to groups and semigroups
与群和半群相关的 Banach 代数的顺应性性质和相关问题
  • 批准号:
    RGPIN-2016-05987
  • 财政年份:
    2019
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Amenability properties and related problems of Banach algebras associated to groups and semigroups
与群和半群相关的 Banach 代数的顺应性性质和相关问题
  • 批准号:
    RGPIN-2016-05987
  • 财政年份:
    2018
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Amenability properties and related problems of Banach algebras associated to groups and semigroups
与群和半群相关的 Banach 代数的顺应性性质和相关问题
  • 批准号:
    RGPIN-2016-05987
  • 财政年份:
    2017
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Amenability properties and related problems of Banach algebras associated to groups and semigroups
与群和半群相关的 Banach 代数的顺应性性质和相关问题
  • 批准号:
    RGPIN-2016-05987
  • 财政年份:
    2016
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Cohomology in Banach algebras and amenability properties of semigroups
Banach代数中的上同调和半群的顺从性
  • 批准号:
    238949-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Cohomology in Banach algebras and amenability properties of semigroups
Banach代数中的上同调和半群的顺从性
  • 批准号:
    238949-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Cohomology in Banach algebras and amenability properties of semigroups
Banach代数中的上同调和半群的顺从性
  • 批准号:
    238949-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Cohomology in Banach algebras and amenability properties of semigroups
Banach代数中的上同调和半群的顺从性
  • 批准号:
    238949-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

镍基UNS N10003合金辐照位错环演化机制及其对力学性能的影响研究
  • 批准号:
    12375280
  • 批准年份:
    2023
  • 资助金额:
    53.00 万元
  • 项目类别:
    面上项目
聚合铁-腐殖酸混凝沉淀-絮凝调质过程中絮体污泥微界面特性和群体流变学的研究
  • 批准号:
    20977008
  • 批准年份:
    2009
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
层状钴基氧化物热电材料的组织取向度与其性能关联规律研究
  • 批准号:
    50702003
  • 批准年份:
    2007
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

YAP/TAZ Regulation of Extracellular Matrix Homeostasis
YAP/TAZ 细胞外基质稳态的调节
  • 批准号:
    10719507
  • 财政年份:
    2023
  • 资助金额:
    $ 1.09万
  • 项目类别:
Engineered hybrid aging model for disease progression
用于疾病进展的工程混合衰老模型
  • 批准号:
    10608767
  • 财政年份:
    2023
  • 资助金额:
    $ 1.09万
  • 项目类别:
A 11C-UCB-J PET Study of Synaptic Density in Binge Eating Disorder (BED)
暴食症 (BED) 突触密度的 11C-UCB-J PET 研究
  • 批准号:
    10673376
  • 财政年份:
    2023
  • 资助金额:
    $ 1.09万
  • 项目类别:
Analysis of noncompactness of the Trudinger-Moser inequalities and related properties
Trudinger-Moser 不等式的非紧性分析及相关性质
  • 批准号:
    23K13002
  • 财政年份:
    2023
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Algebraic, Analytic, and Dynamical Properties of Group Actions on 1-Manifolds and Related Spaces
职业:1-流形和相关空间上群作用的代数、解析和动力学性质
  • 批准号:
    2240136
  • 财政年份:
    2023
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Continuing Grant
SPOP drives neurodegenerative tauopathy
SPOP 驱动神经退行性 tau 病
  • 批准号:
    10734807
  • 财政年份:
    2023
  • 资助金额:
    $ 1.09万
  • 项目类别:
Cardiopulmonary outcomes of dual cigarette and e-cigarette use in animal models of chronic exposure
慢性暴露动物模型中同时使用香烟和电子烟的心肺结果
  • 批准号:
    10666054
  • 财政年份:
    2023
  • 资助金额:
    $ 1.09万
  • 项目类别:
Customized nanofibers with preferential lung-targeting properties for treating metastatic pulmonary tumors
具有优先肺部靶向特性的定制纳米纤维可用于治疗转移性肺肿瘤
  • 批准号:
    10623913
  • 财政年份:
    2023
  • 资助金额:
    $ 1.09万
  • 项目类别:
Poly(ADP-ribose)-dependent TDP-43 pathology in oxidative stress (R21)
氧化应激中聚 (ADP-核糖) 依赖性 TDP-43 病理学 (R21)
  • 批准号:
    10753095
  • 财政年份:
    2023
  • 资助金额:
    $ 1.09万
  • 项目类别:
The impact of the dermal ECM microenvironment on cutaneous aging and cancer
真皮ECM微环境对皮肤衰老和癌症的影响
  • 批准号:
    10637690
  • 财政年份:
    2023
  • 资助金额:
    $ 1.09万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了