Amenability properties and related problems of Banach algebras associated to groups and semigroups
与群和半群相关的 Banach 代数的顺应性性质和相关问题
基本信息
- 批准号:RGPIN-2016-05987
- 负责人:
- 金额:$ 1.09万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed research deals with semitopological semigroups, topological groups and Banach algebras associated to them. We investigate different amenability properties of these objects and study various group/semigroup actions on subsets of a Banach space or a locally convex space.
Amenability theory for groups may trace back to 1920's when J. von Neumann investigated the Banach-Taski paradox and raised the general question of whether there is an invariant measure for a group acting on certain sets. M. M. Day laid down the foundation of the theory for semigroups in 1950's. Since then the amenability theory for groups and semigroups has interacted fruitfully with Banach algebra theory, giving rise to many beautiful and deep results regarding the structure of groups/semigroups and the property of related spaces/algebras.
B.E. Johnson discovered the relation between amenability of a group and the cohomology property of the corresponding group algebra. He then established the amenability theory for Banach algebras in 1970's. After his pioneer work, weak amenability, operator amenability, weak operator amenability and generalized amenability for Banach algebras have been established and extensively investigated. How these amenabilities (for Banach algebras) reflect properties of related groups and semigroups is a profound question in the area. Centered around this question there is a list of open problems that involve various Banach algebras associated to groups or semigroups. We will focus on weighted group algebras, weighted semigroups algebras and F-algebras to investigate these amenabilities.
The topics on Banach algebras associated to groups and semigroups are closely related to the theory of group/semigroup actions on subsets of Banach or, more generally, locally convex topological spaces. There are variety types of group/semigroup actions on a set of a locally convex space. Among them affine actions and non-expansive actions are of extreme importance to many analysis areas. Studying these actions provides keys to better understanding of the spaces on which the groups/semigroups act. We will concentrate on fixed point properties for affine or non-expansive semigroup actions on two types of sets: (1) weakly or weak* compact sets of a Banach or a dual Banach space, and (2) subsets of a strictly convex Banach space or a Hilbert space.
In addition to the expected theoretical contributions to Banach algebra, harmonic analysis and fixed point theories, the research will have applications in dynamic systems, ergodic theory and approximation theory. The program provides a great opportunity for graduate students at both PhD and Master's levels to choose topics for their thesis. It is also suitable for a postdoctoral fellow who wishes to do significant research. We plan to train a few graduate students under the program, and we will provide postdoctoral positions in carrying out the program.
拟研究的内容涉及拓扑半群、拓扑群以及与之相关的Banach代数。我们调查这些对象的不同顺从性的性质,并研究了各种群/半群的Banach空间或局部凸空间的子集上的行动。
群的顺从性理论可以追溯到20世纪20年代,当时J·冯·诺依曼研究了巴拿赫-塔斯基悖论,并提出了一个一般性的问题,即是否存在作用于某些集合上的群的不变测度。M. M.戴在20世纪50年代奠定了半群理论的基础。从那时起,群和半群的顺从性理论与Banach代数理论产生了富有成效的相互作用,产生了许多关于群/半群结构和相关空间/代数性质的美丽而深刻的结果。
B.E.约翰逊发现了群的顺从性与相应群代数的上同调性之间的关系。70年代,他建立了Banach代数的顺从性理论。在他的开创性工作之后,Banach代数的弱顺从性、算子顺从性、弱算子顺从性和广义顺从性得到了广泛的研究。Banach代数的这些顺从性如何反映相关群和半群的性质是该领域的一个深刻问题。围绕这个问题有一个开放的问题,涉及到各种Banach代数群或半群。我们将集中在加权群代数,加权半群代数和F-代数来研究这些顺应性。
主题的Banach代数相关的群体和半群是密切相关的理论组/半群行动的子集的Banach或更普遍的是,局部凸拓扑空间。在局部凸空间的集合上有各种类型的群/半群作用。其中,仿射作用和非扩张作用在许多分析领域都具有极其重要的意义。研究这些作用为更好地理解群/半群作用的空间提供了关键。我们将集中讨论仿射或非扩张半群作用在两类集合上的不动点性质:(1)Banach或对偶Banach空间的弱或弱 * 紧集,以及(2)严格凸Banach空间或Hilbert空间的子集。
除了预期的理论贡献,Banach代数,调和分析和不动点理论,研究将在动力系统,遍历理论和逼近理论的应用。该计划为博士和硕士水平的研究生提供了一个很好的机会来选择论文主题。它也适合希望做重要研究的博士后研究员。我们计划在该项目下培养一些研究生,我们将提供博士后职位来实施该项目。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhang, Yong其他文献
Charge Transfer and Level Lifetime in Molecular Photon-Absorption upon the Quantum Impedance Lorentz Oscillator.
- DOI:
10.1021/acsomega.3c01922 - 发表时间:
2023-06-06 - 期刊:
- 影响因子:4.1
- 作者:
Bai, Qi-Qi;Fang, Zheng-Ji;Wang, Xiao-Feng;Zhang, Yong;Zhao, Xing-Hua;Zhao, Pei-De - 通讯作者:
Zhao, Pei-De
Reed biochar supported hydroxyapatite nanocomposite: Characterization and reactivity for methylene blue removal from aqueous media
- DOI:
10.1016/j.molliq.2018.04.132 - 发表时间:
2018-08-01 - 期刊:
- 影响因子:6
- 作者:
Li, Yiming;Zhang, Yong;Wei, Wei - 通讯作者:
Wei, Wei
Effects of enteral nutrition with different energy supplies on metabolic changes and organ damage in burned rats.
- DOI:
10.1093/burnst/tkac042 - 发表时间:
2022 - 期刊:
- 影响因子:5.3
- 作者:
Yang, Yong-Jun;Su, Sen;Zhang, Yong;Wu, Dan;Wang, Chao;Wei, Yan;Peng, Xi - 通讯作者:
Peng, Xi
Asymmetric heat conduction in nonlinear lattices
- DOI:
10.1103/physrevlett.97.124302 - 发表时间:
2006-09-22 - 期刊:
- 影响因子:8.6
- 作者:
Hu, Bambi;Yang, Lei;Zhang, Yong - 通讯作者:
Zhang, Yong
Recent Insight on Regulations of FBXW7 and Its Role in Immunotherapy.
- DOI:
10.3389/fonc.2022.925041 - 发表时间:
2022 - 期刊:
- 影响因子:4.7
- 作者:
Xing, Liangliang;Xu, Leidi;Zhang, Yong;Che, Yinggang;Wang, Min;Shao, Yongxiang;Qiu, Dan;Yu, Honglian;Zhao, Feng;Zhang, Jian - 通讯作者:
Zhang, Jian
Zhang, Yong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhang, Yong', 18)}}的其他基金
Amenability properties of semitopological semigroups and related Banach algebras
半拓扑半群和相关巴纳赫代数的顺应性性质
- 批准号:
RGPIN-2022-04137 - 财政年份:2022
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Amenability properties and related problems of Banach algebras associated to groups and semigroups
与群和半群相关的 Banach 代数的顺应性性质和相关问题
- 批准号:
RGPIN-2016-05987 - 财政年份:2021
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Amenability properties and related problems of Banach algebras associated to groups and semigroups
与群和半群相关的 Banach 代数的顺应性性质和相关问题
- 批准号:
RGPIN-2016-05987 - 财政年份:2019
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Amenability properties and related problems of Banach algebras associated to groups and semigroups
与群和半群相关的 Banach 代数的顺应性性质和相关问题
- 批准号:
RGPIN-2016-05987 - 财政年份:2018
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Amenability properties and related problems of Banach algebras associated to groups and semigroups
与群和半群相关的 Banach 代数的顺应性性质和相关问题
- 批准号:
RGPIN-2016-05987 - 财政年份:2017
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Amenability properties and related problems of Banach algebras associated to groups and semigroups
与群和半群相关的 Banach 代数的顺应性性质和相关问题
- 批准号:
RGPIN-2016-05987 - 财政年份:2016
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Cohomology in Banach algebras and amenability properties of semigroups
Banach代数中的上同调和半群的顺从性
- 批准号:
238949-2011 - 财政年份:2015
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Cohomology in Banach algebras and amenability properties of semigroups
Banach代数中的上同调和半群的顺从性
- 批准号:
238949-2011 - 财政年份:2014
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Cohomology in Banach algebras and amenability properties of semigroups
Banach代数中的上同调和半群的顺从性
- 批准号:
238949-2011 - 财政年份:2013
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Cohomology in Banach algebras and amenability properties of semigroups
Banach代数中的上同调和半群的顺从性
- 批准号:
238949-2011 - 财政年份:2012
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
镍基UNS N10003合金辐照位错环演化机制及其对力学性能的影响研究
- 批准号:12375280
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
聚合铁-腐殖酸混凝沉淀-絮凝调质过程中絮体污泥微界面特性和群体流变学的研究
- 批准号:20977008
- 批准年份:2009
- 资助金额:34.0 万元
- 项目类别:面上项目
层状钴基氧化物热电材料的组织取向度与其性能关联规律研究
- 批准号:50702003
- 批准年份:2007
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
YAP/TAZ Regulation of Extracellular Matrix Homeostasis
YAP/TAZ 细胞外基质稳态的调节
- 批准号:
10719507 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Engineered hybrid aging model for disease progression
用于疾病进展的工程混合衰老模型
- 批准号:
10608767 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
A 11C-UCB-J PET Study of Synaptic Density in Binge Eating Disorder (BED)
暴食症 (BED) 突触密度的 11C-UCB-J PET 研究
- 批准号:
10673376 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Analysis of noncompactness of the Trudinger-Moser inequalities and related properties
Trudinger-Moser 不等式的非紧性分析及相关性质
- 批准号:
23K13002 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Algebraic, Analytic, and Dynamical Properties of Group Actions on 1-Manifolds and Related Spaces
职业:1-流形和相关空间上群作用的代数、解析和动力学性质
- 批准号:
2240136 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Continuing Grant
Cardiopulmonary outcomes of dual cigarette and e-cigarette use in animal models of chronic exposure
慢性暴露动物模型中同时使用香烟和电子烟的心肺结果
- 批准号:
10666054 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Customized nanofibers with preferential lung-targeting properties for treating metastatic pulmonary tumors
具有优先肺部靶向特性的定制纳米纤维可用于治疗转移性肺肿瘤
- 批准号:
10623913 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Poly(ADP-ribose)-dependent TDP-43 pathology in oxidative stress (R21)
氧化应激中聚 (ADP-核糖) 依赖性 TDP-43 病理学 (R21)
- 批准号:
10753095 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
The impact of the dermal ECM microenvironment on cutaneous aging and cancer
真皮ECM微环境对皮肤衰老和癌症的影响
- 批准号:
10637690 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:














{{item.name}}会员




