L-functions over number fields and function fields

数域和函数域上的 L 函数

基本信息

  • 批准号:
    RGPIN-2019-05536
  • 负责人:
  • 金额:
    $ 2.33万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

L-functions lie in the heart of analytic number theory, because they encode the properties of several important objects, such as distribution of prime numbers, which are positive integers only divisible by themselves and 1, as 2,3,5,7,11,13,17... It was proven by Euclid 2300 years ago that they are infinitely many primes, and an asymptotic formula for the number of primes p up to x was conjectured by Gauss 200 years ago. Gauss also conjectured that the asymptotic is very precise, with a very small error term. The asymptotic was proven by Hadamard and de la Vallee-Poussin in 1896, and called "The Prime Number Theorem". But proving that the fit to the asymptotic is as good as Gauss conjectured is still an open problem, which is called "The Riemann Hypothesis", and is one of the Clay Millenium Problem (with a prize of 1 million dollars...) The Riemann Hypothesis is equivalent to the knowledge of  the location of the zeroes of the Riemann zeta function, which is the first "L-function".  Since then, the concept of L-functions was generalized in many directions, and the analytic properties of those L-functions (as the location of their zeroes) are related to many of the deepest questions, solved or unsolved, in number theory. In the last decades, it has emerged for the seminal work of Katz and Sarnak that is is very fruitful to study "families of L-functions", which are sets of L-functions sharing some common features, because statistics for the family of L-function provide valuable information for individual L-functions. The understanding of L-functions is at the core of my research program. I have focused in the last years on special families, as the family of "cubic twists" of L-functions. The theory is well understood for "quadratic twists", but there are very few works on families of cubic twists in the literature, especially compared to the abundance of literature on families of quadratic twists. I also study L-functions attached to "elliptic curves", which again provide very important information about the elliptic curves, for example through the Birch and Swinnerton-Dyer conjecture, another of the Clay Millenium Problem. Those L-functions are also related to the Sato-Tate conjecture, which was proven in 2010 by Taylor by showing that certain L-functions associated to elliptic curves are well-defined (or analytic) and non-zero in some part of their domain. Improvement of our knowledge of L-functions have profound consequences to our understanding of the structure of arithmetic objects, as primes, elliptic curves, and many others, and the understanding of L-functions is at the core of my research program.
L-functions lie in the heart of analytic number theory, because they encode the properties of several important objects, such as distribution of prime numbers, which are positive integers only divisible by themselves and 1, as 2,3,5,7,11,13,17... It was proven by Euclid 2300 years ago that they are infinitely many primes, and an asymptotic formula for the number of primes p up to x was conjectured by Gauss 200 years ago. Gauss also conjectured that the asymptotic is very precise, with a very small error term. The asymptotic was proven by Hadamard and de la Vallee-Poussin in 1896, and called "The Prime Number Theorem". But proving that the fit to the asymptotic is as good as Gauss conjectured is still an open problem, which is called "The Riemann Hypothesis", and is one of the Clay Millenium Problem (with a prize of 1 million dollars...) The Riemann Hypothesis is equivalent to the knowledge of  the location of the zeroes of the Riemann zeta function, which is the first "L-function".  Since then, the concept of L-functions was generalized in many directions, and the analytic properties of those L-functions (as the location of their zeroes) are related to many of the deepest questions, solved or unsolved, in number theory. In the last decades, it has emerged for the seminal work of Katz and Sarnak that is is very fruitful to study "families of L-functions", which are sets of L-functions sharing some common features, because statistics for the family of L-function provide valuable information for individual L-functions. The understanding of L-functions is at the core of my research program. I have focused in the last years on special families, as the family of "cubic twists" of L-functions. The theory is well understood for "quadratic twists", but there are very few works on families of cubic twists in the literature, especially compared to the abundance of literature on families of quadratic twists. I also study L-functions attached to "elliptic curves", which again provide very important information about the elliptic curves, for example through the Birch and Swinnerton-Dyer conjecture, another of the Clay Millenium Problem. Those L-functions are also related to the Sato-Tate conjecture, which was proven in 2010 by Taylor by showing that certain L-functions associated to elliptic curves are well-defined (or analytic) and non-zero in some part of their domain. Improvement of our knowledge of L-functions have profound consequences to our understanding of the structure of arithmetic objects, as primes, elliptic curves, and many others, and the understanding of L-functions is at the core of my research program.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David, Chantal其他文献

On the vanishing of twisted L-functions of elliptic curves over rational function fields
关于有理函数域上椭圆曲线扭曲L函数的消失
  • DOI:
    10.1007/s40993-022-00379-w
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Comeau-Lapointe, Antoine;David, Chantal;Lalin, Matilde;Li, Wanlin
  • 通讯作者:
    Li, Wanlin
Use of Flow Modeling to Optimize the Twin-Screw Extrusion Process for the Preparation of Lignocellulosic Fiber-Based Composites
  • DOI:
    10.3389/fmats.2020.00218
  • 发表时间:
    2020-07-24
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Berzin, Francoise;David, Chantal;Vergnes, Bruno
  • 通讯作者:
    Vergnes, Bruno
Modelling and Validation of Synthesis of Poly Lactic Acid Using an Alternative Energy Source through a Continuous Reactive Extrusion Process
  • DOI:
    10.3390/polym8040164
  • 发表时间:
    2016-04-01
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Dubey, Satya P.;Abhyankar, Hrushikesh A.;David, Chantal
  • 通讯作者:
    David, Chantal
Non-isotrivial elliptic surfaces with non-zero average root number
平均根数非零的非等平凡椭圆面
  • DOI:
    10.1016/j.jnt.2018.03.007
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    Bettin, Sandro;David, Chantal;Delaunay, Christophe
  • 通讯作者:
    Delaunay, Christophe
Microwave energy assisted synthesis of poly lactic acid via continuous reactive extrusion: modelling of reaction kinetics
  • DOI:
    10.1039/c6ra26514f
  • 发表时间:
    2017-01-01
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Dubey, Satya P.;Abhyankar, Hrushikesh A.;David, Chantal
  • 通讯作者:
    David, Chantal

David, Chantal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David, Chantal', 18)}}的其他基金

L-functions over number fields and function fields
数域和函数域上的 L 函数
  • 批准号:
    RGPIN-2019-05536
  • 财政年份:
    2021
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Discovery Grants Program - Individual
L-functions over number fields and function fields
数域和函数域上的 L 函数
  • 批准号:
    RGPIN-2019-05536
  • 财政年份:
    2020
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Discovery Grants Program - Individual
L-functions over number fields and function fields
数域和函数域上的 L 函数
  • 批准号:
    RGPIN-2019-05536
  • 财政年份:
    2019
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Discovery Grants Program - Individual
Arithmetic Statistics: Groups of Elliptic Curves and Abelian Varieties, and Zeroes of Families of Curves over Finite Fields.
算术统计:椭圆曲线群和阿贝尔簇,以及有限域上曲线族的零点。
  • 批准号:
    155635-2013
  • 财政年份:
    2018
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Discovery Grants Program - Individual
Arithmetic Statistics: Groups of Elliptic Curves and Abelian Varieties, and Zeroes of Families of Curves over Finite Fields.
算术统计:椭圆曲线群和阿贝尔簇,以及有限域上曲线族的零点。
  • 批准号:
    155635-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Discovery Grants Program - Individual
Arithmetic Statistics: Groups of Elliptic Curves and Abelian Varieties, and Zeroes of Families of Curves over Finite Fields.
算术统计:椭圆曲线群和阿贝尔簇,以及有限域上曲线族的零点。
  • 批准号:
    155635-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Discovery Grants Program - Individual
Arithmetic Statistics: Groups of Elliptic Curves and Abelian Varieties, and Zeroes of Families of Curves over Finite Fields.
算术统计:椭圆曲线群和阿贝尔簇,以及有限域上曲线族的零点。
  • 批准号:
    155635-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Discovery Grants Program - Individual
Arithmetic Statistics: Groups of Elliptic Curves and Abelian Varieties, and Zeroes of Families of Curves over Finite Fields.
算术统计:椭圆曲线群和阿贝尔簇,以及有限域上曲线族的零点。
  • 批准号:
    155635-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Discovery Grants Program - Individual
Elliptic curves and L-functions
椭圆曲线和 L 函数
  • 批准号:
    155635-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Discovery Grants Program - Individual
Elliptic curves and L-functions
椭圆曲线和 L 函数
  • 批准号:
    155635-2008
  • 财政年份:
    2011
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

面向IP over EON多层网络生存性流量疏导机理的研究
  • 批准号:
    61671313
  • 批准年份:
    2016
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
面向UWB-over-fiber的光生可调谐超宽带信号研究
  • 批准号:
    61108027
  • 批准年份:
    2011
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目
基于QAM光载毫米波信号的10Gb/s RoF系统关键技术研究
  • 批准号:
    61001061
  • 批准年份:
    2010
  • 资助金额:
    7.0 万元
  • 项目类别:
    青年科学基金项目
基于约束行为的柔性精微机构设计方法研究
  • 批准号:
    50975007
  • 批准年份:
    2009
  • 资助金额:
    38.0 万元
  • 项目类别:
    面上项目
基于无线光载射频(Radio over Free Space Optics)技术的分布式天线系统关键技术研究
  • 批准号:
    60902038
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于双路光相位调制光学倍频法的毫米波Radio Over Fiber系统研究
  • 批准号:
    60877053
  • 批准年份:
    2008
  • 资助金额:
    42.0 万元
  • 项目类别:
    面上项目
小桐子种子油含量关键靶基因的克隆与调控研究
  • 批准号:
    30871548
  • 批准年份:
    2008
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
毫米波光纤无线系统理论与技术
  • 批准号:
    60736003
  • 批准年份:
    2007
  • 资助金额:
    190.0 万元
  • 项目类别:
    重点项目
新一代互联网络体系结构与协议理论
  • 批准号:
    90704001
  • 批准年份:
    2007
  • 资助金额:
    100.0 万元
  • 项目类别:
    重大研究计划
基于正交调制FSK/ASK 的IP-over-DWDM、FSK 光标记交换关键技术研究
  • 批准号:
    60677004
  • 批准年份:
    2006
  • 资助金额:
    21.0 万元
  • 项目类别:
    面上项目

相似海外基金

The Ohio Valley Node of the Clinical Trials Network
临床试验网络俄亥俄谷节点
  • 批准号:
    10652032
  • 财政年份:
    2022
  • 资助金额:
    $ 2.33万
  • 项目类别:
Synergistic effect of maternal insulin-resistance and cortisol in pregnancy on fetal programming of child mitochondrial function and obesity risk
妊娠期母体胰岛素抵抗和皮质醇对胎儿线粒体功能和肥胖风险的协同作用
  • 批准号:
    10620890
  • 财政年份:
    2022
  • 资助金额:
    $ 2.33万
  • 项目类别:
Analytic Number Theory over Function Fields
函数域的解析数论
  • 批准号:
    2101491
  • 财政年份:
    2021
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Continuing Grant
Class number formula over global field of characteristic p and with coefficients.
特征 p 和系数的全局域上的类数公式。
  • 批准号:
    21K03186
  • 财政年份:
    2021
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Bayesian evidence synthesis approach to an adaptable model for estimating the number of overdose events in a population over a given calendar period of time
贝叶斯证据综合方法的适应性模型,用于估计给定日历时间段内人群中用药过量事件的数量
  • 批准号:
    449162
  • 财政年份:
    2021
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Fellowship Programs
L-functions over number fields and function fields
数域和函数域上的 L 函数
  • 批准号:
    RGPIN-2019-05536
  • 财政年份:
    2021
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Discovery Grants Program - Individual
Harmonic analysis over Chevalley groups and number theory
Chevalley 群和数论的调和分析
  • 批准号:
    2603416
  • 财政年份:
    2021
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Studentship
L-functions over number fields and function fields
数域和函数域上的 L 函数
  • 批准号:
    RGPIN-2019-05536
  • 财政年份:
    2020
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Discovery Grants Program - Individual
Investigating the Molecular Architecture of the Synaptonemal Complex and its Role in Crossover Formation.
研究联会复合体的分子结构及其在交叉形成中的作用。
  • 批准号:
    10220868
  • 财政年份:
    2020
  • 资助金额:
    $ 2.33万
  • 项目类别:
Pseudorandom majorants over number fields with applications in arithmetic geometry
数域上的伪随机主数及其在算术几何中的应用
  • 批准号:
    EP/T01170X/2
  • 财政年份:
    2020
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了