Analytic Number Theory over Function Fields
函数域的解析数论
基本信息
- 批准号:2101491
- 负责人:
- 金额:$ 23.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Number theory is an area of mathematics that centers on the ordinary counting numbers and their behavior when we add and multiply them. While problems in this area are often simple to state, they can be fiendishly difficult to solve. The subfield of function field number theory aims to obtain insight on these problems by considering a kind of model or parallel universe where numbers behave differently. We consider what happens when we add or multiply numbers as normal but, except, instead of carrying digits, we simply drop the excess. Certainly arithmetic is a little easier with this modified rule, but more surprisingly, some of the most important problems in number theory become easier as well, with even some of the most difficult ones becoming solvable. (Technically, we should work in binary, or any prime base, rather than our usual base 10, for this.) Alternately, we can describe this variant arithmetic as the addition or multiplication of polynomial functions in a single variable. In this setting, we can connect number-theoretic questions to geometry, by viewing the graph of the polynomial as a geometric object. In this award the PI's research uses geometric tools to solve new problems in this area.The PI's research has resolved function field analogues of classical problems in number theory, including the twin primes conjecture and Chowla's conjecture (both joint with Shusterman), cases of the Ramanujan conjecture (joint with Templier), and conjectures about moments of L-functions. In this award the PI will continue along these lines, proving additional results about the distribution of prime numbers, L-function moments, and automorphic forms, and work in further directions such as non-abelian Cohen-Lenstra heuristics. These works are all based on etale cohomology theory, where the foundational result, Deligne's Riemann Hypothesis, allows many different analytic problems (problems about proving some inequality) to be reduced to cohomology problems (problems about calculating some of the cohomology groups of a variety or sheaf). The relevant varieties are high-dimensional, and calculating the necessary cohomology groups requires techniques like vanishing cycles theory and the characteristic cycle.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数论是数学的一个领域,它集中在普通的计数数字和他们的行为,当我们添加和乘以他们。虽然这方面的问题通常很容易陈述,但它们可能非常难以解决。函数域数论的子领域旨在通过考虑一种模型或平行宇宙来洞察这些问题,其中数字表现不同。我们把数字的加法或乘法看作是正常的,但是,除了不携带数字之外,我们只是简单地丢弃多余的数字。当然,用这个修改过的规则,算术会容易一些,但更令人惊讶的是,数论中一些最重要的问题也变得容易了,甚至一些最困难的问题也变得可以解决了。(从技术上讲,我们应该在二进制或任何素数基中工作,而不是我们通常的基数10。或者,我们可以将这种变体算术描述为单个变量中多项式函数的加法或乘法。在这种情况下,我们可以通过将多项式的图形视为几何对象,将数论问题与几何联系起来。在这个奖项中,PI的研究使用几何工具解决了这一领域的新问题。PI的研究解决了数论中经典问题的函数场类似物,包括孪生素数猜想和Chowla猜想(均与Shusterman联合),Ramanujan猜想的情况(与Templier联合),以及关于L函数矩的图解。在这个奖项中,PI将继续沿着这些路线,证明有关素数分布,L-函数矩和自守形式的其他结果,并在进一步的方向工作,如非阿贝尔科恩-伦斯特拉几何学。这些工作都是基于etale上同调理论,其中的基本结果,德利涅的黎曼假设,允许许多不同的分析问题(问题证明一些不等式),以减少到上同调问题(问题计算的一些上同调群的品种或层)。该奖项反映了NSF的法定使命,通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantitative sheaf theory
定量层理论
- DOI:10.1090/jams/1008
- 发表时间:2023
- 期刊:
- 影响因子:3.9
- 作者:Sawin, Will;Forey, A.;Fresán, J.;Kowalski, E.
- 通讯作者:Kowalski, E.
On the Chowla and twin primes conjectures over $\mathbb{F}_q[T]$
关于 $mathbb{F}_q[T]$ 的 Chowla 和孪生素数猜想
- DOI:10.4007/annals.2022.196.2.1
- 发表时间:2022
- 期刊:
- 影响因子:4.9
- 作者:Sawin, Will;Shusterman, Mark
- 通讯作者:Shusterman, Mark
Möbius cancellation on polynomial sequences and the quadratic Bateman–Horn conjecture over function fields
多项式序列上的莫比乌斯消去和函数域上的二次贝特曼霍恩猜想
- DOI:10.1007/s00222-022-01115-y
- 发表时间:2022
- 期刊:
- 影响因子:3.1
- 作者:Sawin, Will;Shusterman, Mark
- 通讯作者:Shusterman, Mark
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Will Sawin其他文献
Representation of squares by nonsingular cubic forms
- DOI:
10.1007/s11856-021-2116-2 - 发表时间:
2021-03-23 - 期刊:
- 影响因子:0.800
- 作者:
Lasse Grimmelt;Will Sawin - 通讯作者:
Will Sawin
The size of wild Kloosterman sums in number fields and function fields
- DOI:
10.1007/s11854-023-0325-9 - 发表时间:
2023-12-22 - 期刊:
- 影响因子:0.900
- 作者:
Will Sawin - 通讯作者:
Will Sawin
General multiple Dirichlet series from perverse sheaves
- DOI:
10.1016/j.jnt.2024.03.020 - 发表时间:
2024-09-01 - 期刊:
- 影响因子:
- 作者:
Will Sawin - 通讯作者:
Will Sawin
Subconvexity for emGL/em(3)×emGL/em(2) twists
emGL/em(3)×emGL/em(2) 扭的次凸性
- DOI:
10.1016/j.aim.2022.108420 - 发表时间:
2022-08-06 - 期刊:
- 影响因子:1.500
- 作者:
Prahlad Sharma;Will Sawin - 通讯作者:
Will Sawin
The Miracle of Integer Eigenvalues
- DOI:
10.1134/s0016266324020072 - 发表时间:
2024-07-21 - 期刊:
- 影响因子:0.700
- 作者:
Richard Kenyon;Maxim Kontsevich;Oleg Ogievetskii;Cosmin Pohoata;Will Sawin;Semen Shlosman - 通讯作者:
Semen Shlosman
Will Sawin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
关于群上的短零和序列及其cross number的研究
- 批准号:11501561
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Analytic Number Theory at the Interface
界面上的解析数论
- 批准号:
2401106 - 财政年份:2024
- 资助金额:
$ 23.5万 - 项目类别:
Continuing Grant
Class numbers and discriminants: algebraic and analytic number theory meet
类数和判别式:代数和解析数论的结合
- 批准号:
DP240100186 - 财政年份:2024
- 资助金额:
$ 23.5万 - 项目类别:
Discovery Projects
RII Track-4:NSF: From Analytic Number Theory to Harmonic Analysis
RII Track-4:NSF:从解析数论到调和分析
- 批准号:
2229278 - 财政年份:2023
- 资助金额:
$ 23.5万 - 项目类别:
Standard Grant
CAREER: Research in and Pathways to Analytic Number Theory
职业:解析数论的研究和途径
- 批准号:
2239681 - 财政年份:2023
- 资助金额:
$ 23.5万 - 项目类别:
Continuing Grant
Research on p-adic analytic cohomology of algebraic varieties and application to number theory
代数簇的p-adic解析上同调研究及其在数论中的应用
- 批准号:
22K13899 - 财政年份:2022
- 资助金额:
$ 23.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Applications of random matrix theory in analytic number theory
随机矩阵理论在解析数论中的应用
- 批准号:
RGPIN-2019-04888 - 财政年份:2022
- 资助金额:
$ 23.5万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic Statistics and Analytic Number Theory
算术统计与解析数论
- 批准号:
RGPIN-2017-06589 - 财政年份:2022
- 资助金额:
$ 23.5万 - 项目类别:
Discovery Grants Program - Individual
Analytic number theory and random matrix theory
解析数论和随机矩阵论
- 批准号:
RGPIN-2019-05037 - 财政年份:2022
- 资助金额:
$ 23.5万 - 项目类别:
Discovery Grants Program - Individual
On the Liouville function in short intervals and further topics in analytic number theory
短区间内的刘维尔函数以及解析数论中的进一步主题
- 批准号:
567986-2022 - 财政年份:2022
- 资助金额:
$ 23.5万 - 项目类别:
Postdoctoral Fellowships
Developing an alternative approach to analytic number theory
开发解析数论的替代方法
- 批准号:
RGPIN-2018-04174 - 财政年份:2022
- 资助金额:
$ 23.5万 - 项目类别:
Discovery Grants Program - Individual