Development of High-Order Conservative Numerical Methods for Electromagnetics in Metamaterials and Transport Flows in Environment

超材料电磁学和环境传输流高阶保守数值方法的发展

基本信息

  • 批准号:
    RGPIN-2017-05666
  • 负责人:
  • 金额:
    $ 1.46万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

The objective of the proposed program is to study, develop and analyze the conservative numerical methods for electromagnetics in metamaterials and transport flow problems in environment.******Modelling has been recently recognized as a crucial technique in electromagnetics. For their supernormal electromagnetic features, metamaterials play a very important role in many applications. Due to the long-time electromagnetic responses and the complicated scale structures, computations for electromagnetics in metamaterials are confronted with great challenges. Computing multi-component transport problems is of significant importance in the atmospheric environment and groundwater contamination modelling. The mathematical models describing the complex processes are the nonlinear partial differential equations, which are characterized by transport dominance, moving steep front or interface, turbulence, nonlinearity, multi-scales, enormous size of field scale and long time prediction. Solving these problems has been a driving force in developing efficient numerical methods and computational tools for large scale transport flows in environment and for electromagnetics in metamaterials, in which there are great interests in the development of high-order conservative numerical methods in three dimensions.******The program includes (1) Develop and analyze high-order energy conservative methods for electromagnetics in three dimensional metamaterials; (2) Develop and analyze high-order mass-preserving characteristic methods for aerosol transport problems in three dimensions; (3) Develop and analyze the mass conservative splitting domain decomposition method for multi-component aerosol transports in environment; (4) Development of controlling multicomponent pollution flows in porous media.
该计划的目标是研究、发展和分析超材料中电磁学的守恒数值方法和环境中的输运流动问题。建模最近被认为是电磁学中的关键技术。超材料因其超常的电磁特性,在许多应用中扮演着非常重要的角色。由于电磁响应时间长,尺度结构复杂,超材料的电磁学计算面临着巨大的挑战。多组分输运问题的计算在大气环境和地下水污染模拟中具有重要意义。描述这一复杂过程的数学模型是非线性偏微分方程组,它具有输运占优势、锋面或界面运动陡峭、湍流、非线性、多尺度、场尺度巨大、预报时间长等特点。这些问题的解决推动了环境中大尺度输运流动和超材料中电磁输运问题的高效数值方法和计算工具的发展,其中三维高阶守恒数值方法的发展引起了人们的极大兴趣。*该程序包括:(1)发展和分析三维超材料中电磁问题的高阶能量守恒方法;(2)发展和分析三维气溶胶输运问题的高阶质量守恒特征方法;(3)发展和分析环境中多组分气溶胶输运问题的质量守恒分裂区域分解方法;(4)控制多孔介质中多组分污染流动的研究进展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Liang, Dong其他文献

Mathematical model and characteristics analysis of crossed-axis helical gear drive with small angle based on curve contact element.
  • DOI:
    10.1177/00368504211016202
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Liang, Dong;Meng, Sheng;Tan, Rulong
  • 通讯作者:
    Tan, Rulong
Metabolite Identification of a Novel Anti-Leishmanial Agent OJT007 in Rat Liver Microsomes Using LC-MS/MS.
  • DOI:
    10.3390/molecules27092854
  • 发表时间:
    2022-04-30
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Nigro, Maria Eugenia Rincon;Du, Ting;Gao, Song;Kaur, Manvir;Xie, Huan;Olaleye, Omonike Arike;Liang, Dong
  • 通讯作者:
    Liang, Dong
Point pattern matching: Spectral descriptor based approach
点模式匹配:基于谱描述符的方法
Real-world effectiveness of azvudine for patients infected with the SARS-CoV-2 omicron subvariant BA.5 in an intensive care unit.
  • DOI:
    10.21037/jtd-23-1093
  • 发表时间:
    2023-09-28
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Qi, Xiuping;Yang, Yun;Gong, Baoqiang;Li, Zhiwei;Liang, Dong
  • 通讯作者:
    Liang, Dong
The Genus Parabacteroides Is a Potential Contributor to the Beneficial Effects of Truncal Vagotomy-Related Bariatric Surgery.
  • DOI:
    10.1007/s11695-022-06017-9
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Liang, Dong;Zhang, Xin;Liu, Zhaorui;Zheng, Rui;Zhang, Longjiang;Yu, Dong;Shen, Xiaojun
  • 通讯作者:
    Shen, Xiaojun

Liang, Dong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Liang, Dong', 18)}}的其他基金

Efficient Conservative High-Order Solution-Flux Domain Decomposition Methods and Local Refinements for Flows in Porous Media and Electromagnetics
多孔介质和电磁学中流动的高效保守高阶解-通量域分解方法和局部细化
  • 批准号:
    RGPIN-2022-04571
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Development of High-Order Conservative Numerical Methods for Electromagnetics in Metamaterials and Transport Flows in Environment
超材料电磁学和环境传输流高阶保守数值方法的发展
  • 批准号:
    RGPIN-2017-05666
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Development of High-Order Conservative Numerical Methods for Electromagnetics in Metamaterials and Transport Flows in Environment
超材料电磁学和环境传输流高阶保守数值方法的发展
  • 批准号:
    RGPIN-2017-05666
  • 财政年份:
    2020
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Development of High-Order Conservative Numerical Methods for Electromagnetics in Metamaterials and Transport Flows in Environment
超材料电磁学和环境传输流高阶保守数值方法的发展
  • 批准号:
    RGPIN-2017-05666
  • 财政年份:
    2019
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Development of High-Order Conservative Numerical Methods for Electromagnetics in Metamaterials and Transport Flows in Environment
超材料电磁学和环境传输流高阶保守数值方法的发展
  • 批准号:
    RGPIN-2017-05666
  • 财政年份:
    2017
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Development of Efficient Numerical Methods for Fluid Flows and Electromagnetics
流体流动和电磁学的有效数值方法的开发
  • 批准号:
    238471-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Development of Efficient Numerical Methods for Fluid Flows and Electromagnetics
流体流动和电磁学的有效数值方法的开发
  • 批准号:
    238471-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Development of Efficient Numerical Methods for Fluid Flows and Electromagnetics
流体流动和电磁学的有效数值方法的开发
  • 批准号:
    238471-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Development of Efficient Numerical Methods for Fluid Flows and Electromagnetics
流体流动和电磁学的有效数值方法的开发
  • 批准号:
    425337-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Development of Efficient Numerical Methods for Fluid Flows and Electromagnetics
流体流动和电磁学的有效数值方法的开发
  • 批准号:
    238471-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

基于Order的SIS/LWE变体问题及其应用
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
Poisson Order, Morita 理论,群作用及相关课题
  • 批准号:
    19ZR1434600
  • 批准年份:
    2019
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Model order reduction for fast phase-field fracture simulations
快速相场断裂模拟的模型降阶
  • 批准号:
    EP/Y002474/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Research Grant
Conference: North American High Order Methods Con (NAHOMCon)
会议:北美高阶方法大会 (NAHOMCon)
  • 批准号:
    2333724
  • 财政年份:
    2024
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
  • 批准号:
    2415119
  • 财政年份:
    2024
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Continuing Grant
CAREER: Multiscale Reduced Order Modeling and Design to Elucidate the Microstructure-Property-Performance Relationship of Hybrid Composite Materials
职业:通过多尺度降阶建模和设计来阐明混合复合材料的微观结构-性能-性能关系
  • 批准号:
    2341000
  • 财政年份:
    2024
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
CRII: OAC: Dynamically Adaptive Unstructured Mesh Technologies for High-Order Multiscale Fluid Dynamics Simulations
CRII:OAC:用于高阶多尺度流体动力学仿真的动态自适应非结构​​化网格技术
  • 批准号:
    2348394
  • 财政年份:
    2024
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
Collaborative Research: Dynamics of Short Range Order in Multi-Principal Element Alloys
合作研究:多主元合金中的短程有序动力学
  • 批准号:
    2348956
  • 财政年份:
    2024
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
Congestion control in complex networks with higher-order interactions
具有高阶交互的复杂网络中的拥塞控制
  • 批准号:
    DP240100963
  • 财政年份:
    2024
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Projects
RII Track-4:NSF: Continental-scale, high-order, high-spatial-resolution, ice flow modeling based on graphics processing units (GPUs)
RII Track-4:NSF:基于图形处理单元 (GPU) 的大陆尺度、高阶、高空间分辨率冰流建模
  • 批准号:
    2327095
  • 财政年份:
    2024
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
Collaborative Research: Dynamics of Short Range Order in Multi-Principal Element Alloys
合作研究:多主元合金中的短程有序动力学
  • 批准号:
    2348955
  • 财政年份:
    2024
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
MCA: Problem-Based Learning for Warehousing and Order Fulfillment
MCA:基于问题的仓储和订单履行学习
  • 批准号:
    2322250
  • 财政年份:
    2024
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了