Uncertainty Quantification for Complex Computer Models
复杂计算机模型的不确定性量化
基本信息
- 批准号:RGPIN-2019-04725
- 负责人:
- 金额:$ 1.46万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Uncertainty quantification (UQ) is a modern inter-disciplinary science that integrates methodologies in statistics, numerical analysis and computational applied mathematics to characterize the uncertainties inherent in computer models. Due to rapid advances in computing power, realistic physical modelling and efficient numerical methods, computer models are now widely used to describe complex systems. Such models are used as a faster and less costly alternative to physical experimentation to study systems. UQ for complex computer models helps to produce more accurate predictions and thus is critical for risk assessment and decision making in many areas such as aerospace, renewable energy, climate modeling, and manufacturing. For example, automotive engineers use computer models to design new, safer vehicles much more quickly, and cheaply without having to crash actual cars over and over. UQ methods, such as design optimization, model bias quantification, model verification and validation, and surrogate modeling, are deemed essential in improving the quality and reliability of automotive. As data size and dimensions of computer models increase, the computational cost for analyzing data from computer models can be prohibitively expensive. With the increasing complexity of computer models, the existing methodology may not be applicable to build accurate surrogate models, thereby preventing further statistical inference such as model calibration, optimization, sensitivity analysis and inverse problem. The proposed research program aims to address these critical challenges by developing novel statistical theory and methodologies on experimental design, surrogate modelling, model calibration, inverse problems, and dimension reduction for complex computer models. The proposed research focuses on the following three themes: (a) large-scale inverse problems, functional calibration and design of experiments for dynamic computer models; (b) surrogate modelling, inverse problems, and design of experiments for computer models with multivariate qualitative responses, mixed responses; and censored responses; and (c) emulation of large-scale multi-fidelity computer models, design and dimension reduction of multi-fidelity computer models. The expected research outcomes will significantly advance the current state of the art of statistical approaches for UQ in complex computer models. The new methodologies will be incorporated into publicly released software such as R, therefore directly benefiting researchers and practitioners. The project will also create and integrate educational opportunities, including exposing undergraduate students to UQ in complex computer models, providing graduate students the advanced skills needed to apply the methodologies, and mentoring Ph.D students to become leaders in UQ statistical research.
不确定性量化(Uncertainty Quantitation,UQ)是一门综合了统计学、数值分析和计算应用数学等方法的现代交叉学科,旨在描述计算机模型中固有的不确定性。由于计算能力的快速发展,逼真的物理建模和有效的数值方法,计算机模型现在被广泛用于描述复杂系统。这种模型被用作研究系统的物理实验的更快和更便宜的替代方案。复杂计算机模型的UQ有助于产生更准确的预测,因此对于航空航天、可再生能源、气候建模和制造业等许多领域的风险评估和决策至关重要。例如,汽车工程师使用计算机模型来设计新的,更安全的车辆更快,更便宜,而不必一次又一次地碰撞实际的汽车。设计优化、模型偏差量化、模型验证与确认、替代建模等UQ方法被认为是提高汽车质量和可靠性的重要手段。 随着计算机模型的数据量和维度的增加,分析计算机模型数据的计算成本可能非常昂贵,随着计算机模型的复杂性增加,现有方法可能不适用于建立准确的替代模型,从而阻碍进一步的统计推断,例如模型校准,优化,灵敏度分析和逆问题。拟议的研究计划旨在通过开发新的统计理论和方法的实验设计,替代建模,模型校准,逆问题,并减少复杂的计算机模型的维数来解决这些关键的挑战。拟议的研究集中在以下三个主题:(a)大规模的反问题,功能校准和设计的动态计算机模型的实验;(B)代理建模,反问题,和设计的实验的计算机模型与多变量定性反应,混合反应;和审查的反应;以及(c)大规模多保真度计算机模型的仿真、多保真度计算机模型的设计和降维。 预期的研究成果将显着推进目前的统计方法在复杂的计算机模型中的UQ的艺术。新的方法将被纳入公开发布的软件,如R,因此直接受益于研究人员和从业人员。该项目还将创造和整合教育机会,包括让本科生在复杂的计算机模型中接触UQ,为研究生提供应用方法所需的高级技能,并指导博士生成为UQ统计研究的领导者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lin, Chunfang其他文献
Gemini dodecyl O-glucoside-based vesicles as nanocarriers for catechin laurate
- DOI:
10.1016/j.jff.2017.03.005 - 发表时间:
2017-05-01 - 期刊:
- 影响因子:5.6
- 作者:
Feng, Jin;Lin, Chunfang;Liu, Songbai - 通讯作者:
Liu, Songbai
Lin, Chunfang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lin, Chunfang', 18)}}的其他基金
Uncertainty Quantification for Complex Computer Models
复杂计算机模型的不确定性量化
- 批准号:
RGPIN-2019-04725 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Uncertainty Quantification for Complex Computer Models
复杂计算机模型的不确定性量化
- 批准号:
RGPIN-2019-04725 - 财政年份:2020
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Uncertainty Quantification for Complex Computer Models
复杂计算机模型的不确定性量化
- 批准号:
RGPIN-2019-04725 - 财政年份:2019
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Topics on Design of Experiments and Computer Experiments
实验设计和计算机实验专题
- 批准号:
RGPIN-2014-05889 - 财政年份:2018
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Topics on Design of Experiments and Computer Experiments
实验设计和计算机实验专题
- 批准号:
RGPIN-2014-05889 - 财政年份:2017
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Topics on Design of Experiments and Computer Experiments
实验设计和计算机实验专题
- 批准号:
RGPIN-2014-05889 - 财政年份:2016
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Topics on Design of Experiments and Computer Experiments
实验设计和计算机实验专题
- 批准号:
RGPIN-2014-05889 - 财政年份:2015
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Topics on Design of Experiments and Computer Experiments
实验设计和计算机实验专题
- 批准号:
RGPIN-2014-05889 - 财政年份:2014
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
相似海外基金
Uncertainty Quantification for Complex Computer Models
复杂计算机模型的不确定性量化
- 批准号:
RGPIN-2019-04725 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
CAREER: A Stochastic Framework for Uncertainty Quantification on Complex Geometries: Application to Additive Manufacturing
职业:复杂几何形状不确定性量化的随机框架:在增材制造中的应用
- 批准号:
1942928 - 财政年份:2020
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
Uncertainty Quantification for Complex Computer Models
复杂计算机模型的不确定性量化
- 批准号:
RGPIN-2019-04725 - 财政年份:2020
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Statistical inference and uncertainty quantification for complex process-based models using multiple data sets
使用多个数据集对基于过程的复杂模型进行统计推断和不确定性量化
- 批准号:
NE/T00973X/1 - 财政年份:2020
- 资助金额:
$ 1.46万 - 项目类别:
Research Grant
CDS&E: Graph-Based Learning and Uncertainty Quantification for Large-Scale Complex Data
CDS
- 批准号:
1854637 - 财政年份:2019
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
Uncertainty Quantification for Complex Computer Models
复杂计算机模型的不确定性量化
- 批准号:
RGPIN-2019-04725 - 财政年份:2019
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Characterizing Two Cell Polarity Processes Using Uncertainty Quantification to Analyze Complex Models and Data
协作研究:使用不确定性量化来分析复杂模型和数据来表征两种电池极性过程
- 批准号:
1813071 - 财政年份:2018
- 资助金额:
$ 1.46万 - 项目类别:
Continuing Grant
Collaborative Research: Characterizing Two Cell Polarity Processes Using Uncertainty Quantification to Analyze Complex Models and Data
协作研究:使用不确定性量化来分析复杂模型和数据来表征两种电池极性过程
- 批准号:
1812843 - 财政年份:2018
- 资助金额:
$ 1.46万 - 项目类别:
Continuing Grant
Collaborative Research: A Posteriori Error Analysis for Complex Models with Applications to Efficient Numerical Solution and Uncertainty Quantification
协作研究:复杂模型的后验误差分析及其在高效数值求解和不确定性量化中的应用
- 批准号:
1720473 - 财政年份:2017
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
Collaborative Research: A Posteriori Error Analysis for Complex Models with Applications to Efficient Numerical Solution and Uncertainty Quantification
协作研究:复杂模型的后验误差分析及其在高效数值求解和不确定性量化中的应用
- 批准号:
1720402 - 财政年份:2017
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant