Mathematical Methods for Practical Quantum Computing
实用量子计算的数学方法
基本信息
- 批准号:RGPIN-2018-04064
- 负责人:
- 金额:$ 1.68万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of my research program is to devise practical applications for computing devices known as quantum computers. Quantum computers can harness quantum mechanical phenomena. This allows them to efficiently solve certain problems for which no efficient classical methods are known. In 1994, Peter Shor provided the most famous example of such a quantum speedup by proving that quantum computers can factor integers in polynomial time. This running time is in striking contrast with the exponential running time of the best known classical algorithms. In the time since Shor's discovery, many algorithms leveraging the power of quantum computers have been introduced with applications ranging from cryptography to materials science. This promised increase in efficiency has provided great incentive to solve the challenges associated with building quantum computers and the resulting research efforts recently culminated in the development of small but fully programmable quantum computers. Despite this great experimental progress, applications of quantum computers remain distant. According to the current estimates, the cost of running quantum algorithms exceeds by far the most optimistic previsions for hardware growth. As a result, quantum computers are unlikely to solve problems of practical interests using available techniques. One of the main obstacles to the practical application of quantum computers is the overhead incurred when expressing a quantum algorithm as a logical quantum circuit. This process, which maps the abstract description of an algorithm to the explicit description of a quantum circuit, is often carried out using techniques developed more than a decade ago. At the time, these methods were considered sufficient because the challenges associated with building reliable quantum computers were so far from being met. In light of recent experimental progress, however, these methods appear inadequate. My research program aims at reducing the overhead associated with the construction of logical circuits and their decomposition into basic operations. I plan to develop new methods for the construction of quantum circuits and reliable tools for their optimization. I expect that the contributions stemming from my program will have significant effects on the field of quantum computation and will assist in turning quantum computers into instruments of scientific discovery.
我的研究项目的目标是为被称为量子计算机的计算设备设计实际应用。量子计算机可以利用量子力学现象。这使他们能够有效地解决某些问题,没有有效的经典方法是已知的。1994年,彼得·肖尔(Peter Shor)证明了量子计算机可以在多项式时间内分解整数,从而提供了这种量子加速的最著名例子。这个运行时间与最著名的经典算法的指数运行时间形成鲜明对比。自从Shor的发现以来,许多利用量子计算机能力的算法已经被引入,应用范围从密码学到材料科学。这种效率的提高为解决与构建量子计算机相关的挑战提供了巨大的动力,最近的研究工作最终导致了小型但完全可编程的量子计算机的开发。尽管实验取得了巨大进展,但量子计算机的应用仍然很遥远。根据目前的估计,运行量子算法的成本远远超过了对硬件增长的最乐观预测。因此,量子计算机不太可能使用现有技术解决实际问题。量子计算机实际应用的主要障碍之一是将量子算法表示为逻辑量子电路时所产生的开销。这个过程将算法的抽象描述映射到量子电路的明确描述,通常使用十多年前开发的技术来执行。当时,这些方法被认为已经足够了,因为与构建可靠的量子计算机相关的挑战还远未得到满足。然而,根据最近的实验进展,这些方法似乎不够。我的研究计划旨在减少与逻辑电路的构建及其分解为基本操作相关的开销。我计划开发新的方法来构建量子电路和可靠的优化工具。我希望我的计划所产生的贡献将对量子计算领域产生重大影响,并将有助于将量子计算机转变为科学发现的工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ross, Neil其他文献
An ancient river landscape preserved beneath the East Antarctic Ice Sheet.
- DOI:
10.1038/s41467-023-42152-2 - 发表时间:
2023-10-24 - 期刊:
- 影响因子:16.6
- 作者:
Jamieson, Stewart S. R.;Ross, Neil;Paxman, Guy J. G.;Clubb, Fiona J.;Young, Duncan A.;Yan, Shuai;Greenbaum, Jamin;Blankenship, Donald D.;Siegert, Martin J. - 通讯作者:
Siegert, Martin J.
Bedrock Erosion Surfaces Record Former East Antarctic Ice Sheet Extent
基岩侵蚀表面创下前南极东部冰盖范围
- DOI:
10.1029/2018gl077268 - 发表时间:
2018 - 期刊:
- 影响因子:5.2
- 作者:
Paxman, Guy J.;Jamieson, Stewart S.;Ferraccioli, Fausto;Bentley, Michael J.;Ross, Neil;Armadillo, Egidio;Gasson, Edward G.;Leitchenkov, German;DeConto, Robert M. - 通讯作者:
DeConto, Robert M.
Evidence from ice shelves for channelized meltwater flow beneath the Antarctic Ice Sheet
- DOI:
10.1038/ngeo1977 - 发表时间:
2013-11-01 - 期刊:
- 影响因子:18.3
- 作者:
Le Brocq, Anne M.;Ross, Neil;Siegert, Martin J. - 通讯作者:
Siegert, Martin J.
An extensive subglacial lake and canyon system in Princess Elizabeth Land, East Antarctica
- DOI:
10.1130/g37220.1 - 发表时间:
2016-02-01 - 期刊:
- 影响因子:5.8
- 作者:
Jamieson, Stewart S. R.;Ross, Neil;Siegert, Martin J. - 通讯作者:
Siegert, Martin J.
Ross, Neil的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ross, Neil', 18)}}的其他基金
Mathematical Methods for Practical Quantum Computing
实用量子计算的数学方法
- 批准号:
RGPIN-2018-04064 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Mathematical Methods for Practical Quantum Computing
实用量子计算的数学方法
- 批准号:
RGPIN-2018-04064 - 财政年份:2020
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Mathematical Methods for Practical Quantum Computing
实用量子计算的数学方法
- 批准号:
RGPIN-2018-04064 - 财政年份:2019
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Mathematical Methods for Practical Quantum Computing
实用量子计算的数学方法
- 批准号:
RGPIN-2018-04064 - 财政年份:2018
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Mathematical Methods for Practical Quantum Computing
实用量子计算的数学方法
- 批准号:
DGECR-2018-00404 - 财政年份:2018
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Launch Supplement
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Practical guidance on accessible statistical methods for different estimands in randomised trials
随机试验中不同估计值的可用统计方法的实用指南
- 批准号:
MR/Z503770/1 - 财政年份:2024
- 资助金额:
$ 1.68万 - 项目类别:
Research Grant
CAREER: Practical algorithms and high dimensional statistical methods for multimodal haplotype modelling
职业:多模态单倍型建模的实用算法和高维统计方法
- 批准号:
2239870 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Standard Grant
Research on Practical Application of Self-healing Ground Improvement Methods for an Era of Frequent Disasters
灾害频发时代自愈地基改良方法的实际应用研究
- 批准号:
23H01504 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development and In Vivo Validation of a Theoretical Framework and Practical Methods to Improve Safety and Efficacy of Neuromodulation Electrodes
提高神经调节电极安全性和有效性的理论框架和实用方法的开发和体内验证
- 批准号:
10572029 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
The succession of beauty in practical crafts -Development archiving and exhibition methods in Design Museums
实用工艺中的美的传承——设计博物馆的发展归档与展示方式
- 批准号:
23K12071 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Developing methods to socially cultivate learners' conviviality and to support systematic learning aimed at improving teachers' practical skills
开发方法来培养学习者的社交乐趣并支持旨在提高教师实践技能的系统学习
- 批准号:
23H01011 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of Efficient and Practical Privacy-Preserving Methods for Large-Scale Genomic Statistical Analysis
开发用于大规模基因组统计分析的高效实用的隐私保护方法
- 批准号:
23KJ0649 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Remembering Touch A Practical Investigation Into New Methods To Recreate Touch Like Sensations And Non Bodily Connections For Community Dance And Beyo
记住触摸对重新创建社区舞蹈和 Beyo 的触摸感觉和非身体联系的新方法的实际调查
- 批准号:
2759830 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Studentship
Practical and Powerful Synthetic Organic Methods Using Silanes
使用硅烷的实用且强大的有机合成方法
- 批准号:
RGPIN-2020-05454 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Practical Methods for Efficient Estimation of Effective Thermal Resistance of Exterior Walls
有效估算外墙有效热阻的实用方法
- 批准号:
566879-2021 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Alliance Grants