Measurable group theory, descriptive set theory and model theory of homogeneous structures

可测群论、描述集合论和齐次结构模型论

基本信息

  • 批准号:
    RGPIN-2020-05445
  • 负责人:
  • 金额:
    $ 2.26万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

This is a proposal primarily in mathematical logic, concerning some of its most active areas, such as descriptive set theory and model theory of homogeneous structures. The proposal continuous a research program of the PI. This program concentrates on several themes that have been central in the discipline in the recent years, such as Borel combinatorics, measurable group theory, the Hrushovski property with its connections to profinite group theory and the automatic continuity phenomenon. Part I. Flows in amenable groups. This part will focus on discovering structural phenomena in actions of amenable group on measure spaces. A well-known conjecture of Gardner from the 1990's states that if G is an amenable group acting on a probability measure space in a measure preserving way, then whenever two measurable subsets of the space are G-equidecomposable, then they are G-equidecomposable using measurable pieces. This is a far-reaching generalization of recent breakthrough results. Part II. Structure of hyperfinite equivalence relations. Hyperfinite equivalence relations appear on the interface of ergodic theory and descriptive set theory as equivalence relations induced by Borel actions of the group Z of the integers. A notorious open problem in this discipline asks whether an equivalence relation which is almost everywhere hyperfinite with respect to every probability measure must be hyperfinite.  Part III. Structure of treeable equivalence relations. Structure of p.m.p (probability measure preserving) actions of finitely generated groups is one of the central themes in measured group theory. Ergodic dimension and strong ergodic dimension are invariants of a group defined in terms of the structure of its probability measure preserving actions. Treeable (strongly treeable) groups are those of ergodic (strong ergodic) dimension equal to 1. One of the notorious open questions asks if every treeable group is strongly treeable. Part IV. Extension properties for automorphisms and profinite topology. In the 1990's Hrushovski proved a fundamental theorem about extensions of partial automorphisms of finite graphs: for every finite graph G there exists a finite graph G' containing G as an induced subgraph such that all partial automorphisms of G extend to automorphisms of G'. Since then it has been a focus of extended study to understand which Fraisse classes of finite structures share this property. One of the most interesting problems in this area is a long-standing question of Herwig and Lascar asking whether the class of finite tournaments has this property. Part V. The automatic continuity phenomenon. Automatic continuity is the property of a topological group which says that any homomorphism from that group into a separable group is continuous. It has been recently proved for many infinite-dimensional groups via connections to Fraisee theory. This project aims at developing techniques for proving the automatic continuity for homeomorphism groups.
这主要是在数理逻辑中提出的,涉及到它最活跃的一些领域,如描述集合论和同质结构的模型理论。该提案延续了国际和平研究所的一项研究计划。本课程集中于近年来该学科的几个中心主题,如Borel组合学、可测群论、Hrushovski性质及其与无限群论的联系以及自动连续现象。第一部分以顺从的团体为单位。这部分将集中于发现度量空间上的顺从群作用中的结构现象。1990年S提出的Gardner猜想指出:如果G是以保测的方式作用在概率测度空间上的可约群,则当空间的两个可测子集是G-等重组合时,则它们是G-等重组合的。这是对近期突破性成果的深远概括。第二部分,超有限等价关系的结构。超有限等价关系出现在遍历理论和描述集合论的界面上,是由整数群Z的Borel作用诱导的等价关系。这门学科中一个臭名昭著的悬而未决的问题是,关于每个概率测度几乎处处超有限的等价关系是否一定是超有限的。第三部分,树等价关系的结构。有限生成群的p.m.p(保持概率度量)作用的结构是测群论的中心问题之一。遍历维和强遍历维是根据群的概率度量保持作用的结构定义的群的不变量。可树(强可树)群是那些遍历(强遍历)维度等于1的群。一个著名的公开问题是,是否每个可树群都是强可树的。第四部分:自同构和准有限拓扑的扩张性质。S在1990年代证明了一个关于有限图的部分自同构扩张的基本定理:对每个有限图G,都存在一个有限图G‘,它包含G作为导出子图,使得G的所有部分自同构都扩张到G’的自同构。从那时起,了解哪些Frisse类有限结构共享这一性质一直是扩展研究的焦点。这一领域最有趣的问题之一是Herwig和Lascar长期存在的问题,即有限竞赛类是否具有这一性质。第五部分,自动延续现象。自动连续性是拓扑群的性质,即从该群到可分群的任何同态都是连续的。最近,许多无限维群通过与Frisee理论的联系证明了这一点。这个项目的目的是开发证明同胚群的自动连续性的技术。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sabok, Marcin其他文献

Sabok, Marcin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sabok, Marcin', 18)}}的其他基金

Measurable group theory, descriptive set theory and model theory of homogeneous structures
可测群论、描述集合论和齐次结构模型论
  • 批准号:
    RGPAS-2020-00097
  • 财政年份:
    2022
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Measurable group theory, descriptive set theory and model theory of homogeneous structures
可测群论、描述集合论和齐次结构模型论
  • 批准号:
    RGPIN-2020-05445
  • 财政年份:
    2021
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Measurable group theory, descriptive set theory and model theory of homogeneous structures
可测群论、描述集合论和齐次结构模型论
  • 批准号:
    RGPAS-2020-00097
  • 财政年份:
    2021
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Measurable group theory, descriptive set theory and model theory of homogeneous structures
可测群论、描述集合论和齐次结构模型论
  • 批准号:
    RGPIN-2020-05445
  • 财政年份:
    2020
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Measurable group theory, descriptive set theory and model theory of homogeneous structures
可测群论、描述集合论和齐次结构模型论
  • 批准号:
    RGPAS-2020-00097
  • 财政年份:
    2020
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Logic, dynamics and Ramsey theory
逻辑、动力学和拉姆齐理论
  • 批准号:
    RGPIN-2015-03738
  • 财政年份:
    2019
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Logic, dynamics and Ramsey theory
逻辑、动力学和拉姆齐理论
  • 批准号:
    RGPIN-2015-03738
  • 财政年份:
    2018
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Logic, dynamics and Ramsey theory
逻辑、动力学和拉姆齐理论
  • 批准号:
    RGPIN-2015-03738
  • 财政年份:
    2017
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Logic, dynamics and Ramsey theory
逻辑、动力学和拉姆齐理论
  • 批准号:
    RGPIN-2015-03738
  • 财政年份:
    2016
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Logic, dynamics and Ramsey theory
逻辑、动力学和拉姆齐理论
  • 批准号:
    RGPIN-2015-03738
  • 财政年份:
    2015
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

一类特殊Abelian群的子群计数问题
  • 批准号:
    12301006
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
分泌蛋白IGFBP2在儿童Group3/Group4型髓母细胞瘤恶性进展中的作用与机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
大兴安岭火山湖Group I长链烯酮冷季节温标研究与过去2000年温度定量重建
  • 批准号:
    42073070
  • 批准年份:
    2020
  • 资助金额:
    61 万元
  • 项目类别:
    面上项目
近海沉积物中Marine Group I古菌新类群的发现、培养及其驱动碳氮循环的机制
  • 批准号:
    92051115
  • 批准年份:
    2020
  • 资助金额:
    81.0 万元
  • 项目类别:
    重大研究计划
MicroRNA靶向的漆酶基因及其所在Group 1 亚家族成员 调控水稻产量性状的功能机制
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    257 万元
  • 项目类别:
超级增强子驱动的核心转录调控环路在Group_3亚型髓母细胞瘤的发病和治疗中的作用和机制
  • 批准号:
    81972646
  • 批准年份:
    2019
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
多维列联表数据下的属性控制图研究
  • 批准号:
    11801210
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
c2orf48调控HMGB1促进鼻咽癌侵袭转移的机制研究
  • 批准号:
    81872193
  • 批准年份:
    2018
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
东北地区火山湖GroupⅠ类型的长链烯酮研究及其不饱和度温标的应用
  • 批准号:
    41702187
  • 批准年份:
    2017
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
中国源毕氏肠微孢子虫group 2基因型人兽共患特征的研究
  • 批准号:
    31502055
  • 批准年份:
    2015
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Conference: Geometric and Asymptotic Group Theory with Applications 2024
会议:几何和渐近群理论及其应用 2024
  • 批准号:
    2403833
  • 财政年份:
    2024
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Standard Grant
Conference: Young Geometric Group Theory XII
会议:年轻几何群理论XII
  • 批准号:
    2404322
  • 财政年份:
    2024
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Standard Grant
Conference: Riverside Workshop on Geometric Group Theory 2024
会议:2024 年河滨几何群论研讨会
  • 批准号:
    2342119
  • 财政年份:
    2024
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Standard Grant
Iwasawa theory of class group schemes in characteristic p
特征p中的类群方案岩泽理论
  • 批准号:
    2302072
  • 财政年份:
    2023
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Continuing Grant
Number theory of prehomogeneous vector spaces
预齐次向量空间的数论
  • 批准号:
    23K03052
  • 财政年份:
    2023
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Improving Recruitment, Engagement, and Access for Community Health Equity for BRAIN Next-Generation Human Neuroimaging Research and Beyond (REACH for BRAIN)
改善 BRAIN 下一代人类神经影像研究及其他领域的社区健康公平的招募、参与和获取 (REACH for BRAIN)
  • 批准号:
    10730955
  • 财政年份:
    2023
  • 资助金额:
    $ 2.26万
  • 项目类别:
MRWeight: Medical Residents Learning Weight Management Counseling Skills -- A Multi-Modal, Technology-Assisted, Spaced Education Program
MRWeight:住院医生学习体重管理咨询技能——多模式、技术辅助、间隔教育计划
  • 批准号:
    10561356
  • 财政年份:
    2023
  • 资助金额:
    $ 2.26万
  • 项目类别:
Adapting Treatment Delivery to Improve Retention in Evidence-Based PTSD Treatment
调整治疗方式以提高循证 PTSD 治疗的保留率
  • 批准号:
    10539602
  • 财政年份:
    2023
  • 资助金额:
    $ 2.26万
  • 项目类别:
CBESS: a pipeline program to increase linguistic and geographic diversity in STEM + health
CBESS:一项旨在增加 STEM 健康领域语言和地理多样性的管道计划
  • 批准号:
    10665432
  • 财政年份:
    2023
  • 资助金额:
    $ 2.26万
  • 项目类别:
Conference: Group Theory and Number Theory: Interactions
会议:群论和数论:相互作用
  • 批准号:
    2321445
  • 财政年份:
    2023
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了