Interaction between Representation Theory of Algebras and Cluster Theory

代数表示论与簇论的相互作用

基本信息

  • 批准号:
    RGPIN-2018-06107
  • 负责人:
  • 金额:
    $ 1.68万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Our objective is to study the representation theory of artin algebras with connection to cluster theory. Our methodology consists of AR-theory, tilting theory and covering theory. 1) For artin algebras, we shall describe the shapes of some special AR-components; classify representation-finite algebras whose radical has a small nilpotency; characterize the representation-finiteness in terms of their AR-quievrs; construct all preprojective or preinjective tilting modules over a hereditary algebra and characterize cluster tilted algebras. For a string bound quiver with infinite nonzero paths or a species of an infinite Dynkin valued quiver, we shall classify the indecomposable representations and describe their AR-components.2) Working with extension closed subcategories of triangulated categories, we shall unify the AR-theory studied independently in module categories over rings, exact categories, abelian categories and triangulated categories. This will yield existence theorems of almost split sequences in the representation category of a bound quiver with infinite non-zero paths and that of species of infinite valued quivers with no infinite path. 3) We shall provide some new points of view to study the homological properties of algebras. We shall attack No Loop Conjecture from the AR-quiver of the derived category of artin algebras of finite global dimension and establish Finitistic Dimension Conjecture for algebras with a finite singularity category. We shall find a criterion for an oriented cycle in the quiver of an elementary algebra to support a semisimple module of infinite projective dimension. We shall establish No Loop Conjecture for artin algebras with radical cubed zero and Extension Conjecture for elementary algebras with radical cubed zero. 4) We shall construct a Galois covering for the derived category of a quadratic monomial algebra in order to classify the indecomposable complexes and describe their AR-components in the string case. We shall study a new category, that is the Verdier quotient of the derived category of finitely presented representations of a strongly locally finite quiver by the triangulated subcategory of finite dimensional representations. 5) We shall show that the canonical orbit category of the derived category of the representation category of a species of a finite valued quiver is a cluster category, and it categorifies the corresponding cluster algebra. We shall construct cluster categories of types B infinity and C infinity.6) Given a cluster category of type A infinity or A double infinity, we shall be interested in a criterion for a rigid subcategory to be maximal rigid and in a method to construct all the cluster tilting subcategories.7) Given a cluster category, we shall characterize its rank in terms of some of its intrinsic properties and show that it is the classical cluster category associated with a Dynkin quiver if it is of finite type.
我们的目标是研究与簇理论相关的阿廷代数的表示理论。我们的方法论包括AR理论、倾斜理论和覆盖理论。1)对于artin代数,我们将描述一些特殊的AR-分支的形状,对根具有小幂零性的表示有限代数进行分类,用AR-quievr刻画表示有限性,构造遗传代数上的所有预投射或预内射倾斜模,并刻画簇倾斜代数. 对于具有无限条非零路的弦有界范畴或无限Dynkin值范畴,我们将对不可分解表示进行分类,并刻画它们的AR-分量。2)利用三角范畴的扩张闭子范畴,我们将在环上的模范畴、正合范畴、交换范畴和三角范畴中统一独立研究的AR-理论。这将给出具有无限条非零路的有界箭图的表示范畴中几乎可裂序列的存在性定理和不具有无限条路的无限值箭图的表示范畴中几乎可裂序列的存在性定理。3)我们将为研究代数的同调性质提供一些新的观点。本文从有限整体维数的artin代数的导出范畴的AR-代数出发,攻击了无圈猜想,并建立了有限奇异范畴代数的无圈维数猜想。我们将在初等代数的代数环中找到一个有向圈支持无限投射维数半单模的准则。本文建立了根为三次零的artin代数的无圈猜想和根为三次零的初等代数的扩张猜想。4)为了对不可分解复形进行分类并描述它们在弦情形下的AR-分量,我们将构造二次单项式代数的导出范畴的伽罗瓦覆盖。我们将研究一个新的范畴,即强局部有限群的有限维表示的三角化子范畴的表示的导出范畴的Verdier商。 5)我们将证明有限值群的表示范畴的导出范畴的标准轨道范畴是一个簇范畴,并且它范畴化了相应的簇代数。我们将构造类型为B infinity和C infinity的簇范畴。6)给定类型为A infinity或A double infinity的簇范畴,我们感兴趣的是刚性子范畴为极大刚性的准则和构造所有簇倾斜子范畴的方法。我们将根据它的一些内在性质来刻画它的秩,并证明如果它是有限型的,它就是与Dynkin群相关联的经典簇范畴。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Liu, Shiping其他文献

Role of endoplasmic reticulum autophagy in acute lung injury.
  • DOI:
    10.3389/fimmu.2023.1152336
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Liu, Shiping;Fang, Xiaoyu;Zhu, Ruiyao;Zhang, Jing;Wang, Huijuan;Lei, Jiaxi;Wang, Chaoqun;Wang, Lu;Zhan, Liying
  • 通讯作者:
    Zhan, Liying
High Throughput Single Cell RNA Sequencing, Bioinformatics Analysis and Applications
  • DOI:
    10.1007/978-981-13-0502-3_4
  • 发表时间:
    2018-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Huang, Xiaoyun;Liu, Shiping;Hou, Yong
  • 通讯作者:
    Hou, Yong
20-Hydroxyecdysone-responsive microRNAs of insects
  • DOI:
    10.1080/15476286.2020.1775395
  • 发表时间:
    2020-06-15
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Jin, Xiaoli;Wu, Xiaoyan;Liu, Shiping
  • 通讯作者:
    Liu, Shiping
Spectral distances on graphs
  • DOI:
    10.1016/j.dam.2015.04.011
  • 发表时间:
    2015-08-20
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Gu, Jiao;Hua, Bobo;Liu, Shiping
  • 通讯作者:
    Liu, Shiping
Single-cell transcriptomic landscape identifies the expansion of peripheral blood monocytes as an indicator of HIV-1-TB co-infection.
  • DOI:
    10.1016/j.cellin.2022.100005
  • 发表时间:
    2022-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guo, Qinglong;Zhong, Yu;Wang, Zhifeng;Cao, Tingzhi;Zhang, Mingyuan;Zhang, Peiyan;Huang, Waidong;Bi, Jing;Yuan, Yue;Ou, Min;Zou, Xuanxuan;Xiao, Guohui;Yang, Yuan;Liu, Shiping;Liu, Longqi;Wang, Zhaoqin;Zhang, Guoliang;Wu, Liang
  • 通讯作者:
    Wu, Liang

Liu, Shiping的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Liu, Shiping', 18)}}的其他基金

Interaction between Representation Theory of Algebras and Cluster Theory
代数表示论与簇论的相互作用
  • 批准号:
    RGPIN-2018-06107
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Interaction between Representation Theory of Algebras and Cluster Theory
代数表示论与簇论的相互作用
  • 批准号:
    RGPIN-2018-06107
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Interaction between Representation Theory of Algebras and Cluster Theory
代数表示论与簇论的相互作用
  • 批准号:
    RGPIN-2018-06107
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Interaction between Representation Theory of Algebras and Cluster Theory
代数表示论与簇论的相互作用
  • 批准号:
    RGPIN-2018-06107
  • 财政年份:
    2018
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Representation theory of algebras and related topics
代数表示论及相关主题
  • 批准号:
    172797-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Representation theory of algebras and related topics
代数表示论及相关主题
  • 批准号:
    172797-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Representation theory of algebras and related topics
代数表示论及相关主题
  • 批准号:
    172797-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Representation theory of algebras and related topics
代数表示论及相关主题
  • 批准号:
    172797-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Representation theory of algebras and related topics
代数表示论及相关主题
  • 批准号:
    172797-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Representations of Artin algebras
Artin 代数的表示
  • 批准号:
    172797-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

The subiculum: a key interface between scene representation and event memory?
下托:场景表征和事件记忆之间的关键接口?
  • 批准号:
    BB/V008242/2
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Research Grant
The subiculum: a key interface between scene representation and event memory?
下托:场景表征和事件记忆之间的关键接口?
  • 批准号:
    BB/V008242/1
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Research Grant
The subiculum: a key interface between scene representation and event memory?
下托:场景表征和事件记忆之间的关键接口?
  • 批准号:
    BB/V010549/1
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Research Grant
Representation of Eating Disorder in YA Literature in English: Relationship between Fiction, Non-fiction, and Reader Response
青少年英语文学中饮食失调的表现:小说、非小说与读者反应之间的关系
  • 批准号:
    22K00423
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Interactions between representation theory, algebraic geometry, and physics
表示论、代数几何和物理学之间的相互作用
  • 批准号:
    RGPIN-2022-03135
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Interactions between representation theory, algebraic geometry, and physics
表示论、代数几何和物理学之间的相互作用
  • 批准号:
    DGECR-2022-00437
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Launch Supplement
Representation of facility engineers' knowledge and experiences using building information models that have information of building components and networks between building components
使用具有建筑组件和建筑组件之间网络信息的建筑信息模型来表示设施工程师的知识和经验
  • 批准号:
    21K14328
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Interaction between Representation Theory of Algebras and Cluster Theory
代数表示论与簇论的相互作用
  • 批准号:
    RGPIN-2018-06107
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Cultural Heritage and Representation: (Mis)readings between India and the Indian Diaspora
文化遗产与再现:印度与印度侨民之间的(错误)解读
  • 批准号:
    AH/T005084/1
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Research Grant
Interaction between Representation Theory of Algebras and Cluster Theory
代数表示论与簇论的相互作用
  • 批准号:
    RGPIN-2018-06107
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了