Representation theory of algebras and related topics
代数表示论及相关主题
基本信息
- 批准号:172797-2013
- 负责人:
- 金额:$ 1.09万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project consists of four topics on the representation theory of artin algebras and related areas.
1) We shall study how to decide whether an artin algebra is of finite or infinite global dimension. For a finite dimensional algebra over an algebraically closed field, we shall approach this problem by studying the oriented cycles in the Gabriel quiver of the algebra. For an artin algebra, we shall approach this problem by considering its Cartan determinant. That is, we want to establish, at least for more special classes of algebras, the Cartan Determinant Conjecture which says that the global dimension is infinite whenever the Cartan determinant does not take value one.
2) We shall study the Auslander-Reiten theory further in a general additive category. In case the category is Hom-finite and Krull-Schmidt, we shall try to find a formula which unifies the Auslander-Reiten duality for abelian categories and the Serre duality for triangulated categories. In case the category is 2-Calabi-Yau triangulated, we shall try to obtain an explicit description of its Auslander-Reiten components.
3) We want to study the derived category of an algebra, since it measures the complexity of the homological behavior of the algebra. For this purpose, we shall develop a covering technique for derived categories of locally bounded categories, and apply it to investigate the derived category of an algebra with radical squared-zero. Inspired from the characterization of tilted algebras, we shall be interested in characterizing algebras derived equivalent to a hereditary algebra by the existence of a complete "slice" in the Auslander-Reiten quiver of their derived category.
4) We shall apply our knowledge on the representations of infinite quivers to study cluster categories with an infinite cluster structure. It is particularly realistic for us to study the cluster categories of infinite Dynkin types, since we have shown that the Auslander-Reiten components of the derived category of the finitely presented representations of an infinite Dynkin quiver are all standard.
该项目包括关于Artin代数及相关领域的代表理论的四个主题。
1)我们将研究如何确定Artin代数是有限的还是无限的全球维度。对于在代数封闭场上的有限维代数,我们将通过研究代数的Gabriel颤动中的定向循环来解决此问题。对于Artin代数,我们将通过考虑其cartan的决定因素来解决此问题。也就是说,我们希望至少要建立更多特殊类别的代数,即cartan的决定因素猜想,即每当cartan决定因素不具有价值时,全球维度是无限的。
2)我们将在一般添加剂类别中进一步研究Auslander-Reiten理论。如果该类别是Hom-Finite和Krull-Schmidt,我们将尝试找到一个公式,该公式将Abelian类别的Auslander-Reiten双重性和三角形类别的Serre二元性统一。如果该类别是2-卡拉比三角剖分,我们将尝试获取其Auslander-Reiten组件的明确描述。
3)我们想研究代数的派生类别,因为它衡量了代数的同源行为的复杂性。为此,我们将针对本地界限类别的派生类别开发覆盖技术,并将其应用于以激进平方为零的代数的派生类别。受到倾斜代数的特征的启发,我们将有兴趣通过在其派生类别的Auslander-Reiten Quiver中存在一个完整的“切片”来表征相当于世袭代数的代数。
4)我们将应用有关无限颤动的表示的知识来研究具有无限集群结构的簇类别。对于我们来说,研究无限Dynkin类型的集群类别对我们来说尤为现实,因为我们已经表明,无限dynkin颤抖的有限呈现表示的衍生类别的Auslander-Reiten组件都是标准配置的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Liu, Shiping其他文献
Spectral distances on graphs
- DOI:
10.1016/j.dam.2015.04.011 - 发表时间:
2015-08-20 - 期刊:
- 影响因子:1.1
- 作者:
Gu, Jiao;Hua, Bobo;Liu, Shiping - 通讯作者:
Liu, Shiping
High Throughput Single Cell RNA Sequencing, Bioinformatics Analysis and Applications
- DOI:
10.1007/978-981-13-0502-3_4 - 发表时间:
2018-01-01 - 期刊:
- 影响因子:0
- 作者:
Huang, Xiaoyun;Liu, Shiping;Hou, Yong - 通讯作者:
Hou, Yong
Role of endoplasmic reticulum autophagy in acute lung injury.
- DOI:
10.3389/fimmu.2023.1152336 - 发表时间:
2023 - 期刊:
- 影响因子:7.3
- 作者:
Liu, Shiping;Fang, Xiaoyu;Zhu, Ruiyao;Zhang, Jing;Wang, Huijuan;Lei, Jiaxi;Wang, Chaoqun;Wang, Lu;Zhan, Liying - 通讯作者:
Zhan, Liying
20-Hydroxyecdysone-responsive microRNAs of insects
- DOI:
10.1080/15476286.2020.1775395 - 发表时间:
2020-06-15 - 期刊:
- 影响因子:4.1
- 作者:
Jin, Xiaoli;Wu, Xiaoyan;Liu, Shiping - 通讯作者:
Liu, Shiping
Effects of different water levels on cotton growth and water use through drip irrigation in an arid region with saline ground water of Northwest China
- DOI:
10.1016/j.agwat.2012.02.013 - 发表时间:
2012-06-01 - 期刊:
- 影响因子:6.7
- 作者:
Kang, Yaohu;Wang, Ruoshui;Liu, Shiping - 通讯作者:
Liu, Shiping
Liu, Shiping的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Liu, Shiping', 18)}}的其他基金
Interaction between Representation Theory of Algebras and Cluster Theory
代数表示论与簇论的相互作用
- 批准号:
RGPIN-2018-06107 - 财政年份:2022
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Interaction between Representation Theory of Algebras and Cluster Theory
代数表示论与簇论的相互作用
- 批准号:
RGPIN-2018-06107 - 财政年份:2021
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Interaction between Representation Theory of Algebras and Cluster Theory
代数表示论与簇论的相互作用
- 批准号:
RGPIN-2018-06107 - 财政年份:2020
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Interaction between Representation Theory of Algebras and Cluster Theory
代数表示论与簇论的相互作用
- 批准号:
RGPIN-2018-06107 - 财政年份:2019
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Interaction between Representation Theory of Algebras and Cluster Theory
代数表示论与簇论的相互作用
- 批准号:
RGPIN-2018-06107 - 财政年份:2018
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Representation theory of algebras and related topics
代数表示论及相关主题
- 批准号:
172797-2013 - 财政年份:2017
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Representation theory of algebras and related topics
代数表示论及相关主题
- 批准号:
172797-2013 - 财政年份:2016
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Representation theory of algebras and related topics
代数表示论及相关主题
- 批准号:
172797-2013 - 财政年份:2014
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Representation theory of algebras and related topics
代数表示论及相关主题
- 批准号:
172797-2013 - 财政年份:2013
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Representations of Artin algebras
Artin 代数的表示
- 批准号:
172797-2008 - 财政年份:2012
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
量子群和Schur代数的表示理论
- 批准号:12371032
- 批准年份:2023
- 资助金额:44.00 万元
- 项目类别:面上项目
代数群的表示理论及其在Siegel模形式上的应用
- 批准号:12301016
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
量子环面上几类李代数的表示理论研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
顶点算子代数结构与表示理论中的若干问题
- 批准号:
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
量子环面上几类李代数的表示理论研究
- 批准号:12201624
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Combinatorial Representation Theory of Quantum Groups and Coinvariant Algebras
量子群与协变代数的组合表示论
- 批准号:
2348843 - 财政年份:2024
- 资助金额:
$ 1.09万 - 项目类别:
Standard Grant
Combinatorial structures appearing in representation theory of quantum symmetric subalgebras, and their applications
量子对称子代数表示论中出现的组合结构及其应用
- 批准号:
22KJ2603 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Similarities in representation theory of quantum loop algebras of several types and their developments
几种量子环代数表示论的相似性及其发展
- 批准号:
23K12950 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The structure, classification and representation theory of locally extended affine Lie algebras
局部扩展仿射李代数的结构、分类和表示论
- 批准号:
23K03063 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
KLR algebras and wreath zigzag algebras
KLR 代数和花环锯齿形代数
- 批准号:
23K03043 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)