Multistage Stochastic Integer Programming: Approximate Solution Methods and Applications

多阶段随机整数规划:近似解法及应用

基本信息

  • 批准号:
    RGPIN-2018-04984
  • 负责人:
  • 金额:
    $ 2.62万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Multistage stochastic programming (MSP) provides a modeling framework for sequential decision making under uncertainty. The majority of the application of mathematical programming assumes deterministic data. However, real world problems almost always include some uncertain parameters (e.g., in a portfolio optimization problem, the returns of different assets are highly uncertain at the time of investment). It has been traditionally difficult to predict such uncertainties with a high accuracy, but now with the existence of substantial historical records and advances in data analytics, we can accurately model uncertainty. The ability to exploit available data made it possible to incorporate uncertainty into mathematical models, which is the case in stochastic programming. Moreover, in many applications, the planning horizon has multiple decision stages and the uncertainty is revealed gradually over time. Therefore, MSP is a viable modeling approach. MSP has numerous applications in areas like energy, finance, and scheduling. However, MSP models are notoriously hard to solve in general, and existing solution approaches frequently fail to solve real-life size problems. Motivated by its application potential and limitations of the state-of-the-art solution methods, this program aims to make fundamental algorithmic and theoretical contributions to MSP (especially with integer variables), and extend its applications in a variety of areas.Theme 1 of the program will focus on developing methods that can overcome modeling and algorithmic challenges in the class of MSP problems, especially the ones involving integer variables, and that can provide (provably) good feasible policies. The methodology will be mostly based on novel ways of using (linear) decision rules. In particular, new decision rules will be developed for MSP models with integer variables. The tractability of the proposed methods and the quality of the obtained solutions will be analyzed. The results will significantly advance the state-of-the-art in stochastic programming.Theme 2 of the program will explore diverse applications of MSP such as operating room scheduling, power systems and portfolio optimization. Novel MSP models will be proposed for certain important problems in these areas, and the value of such models over deterministic and two-stage stochastic programming models will be investigated. The results will provide valuable planning, scheduling and operational tools for decision makers.
多阶段随机规划(MSP)为不确定条件下的序贯决策提供了一个建模框架。数学规划的大多数应用都假定数据是确定性的。然而,现实世界的问题几乎总是包含一些不确定的参数(例如,在投资组合优化问题中,不同资产的收益在投资时具有高度的不确定性)。传统上很难高精度地预测这种不确定性,但现在随着大量历史记录的存在和数据分析的进步,我们可以准确地对不确定性进行建模。利用现有数据的能力使将不确定性纳入数学模型成为可能,随机编程就是这种情况。此外,在许多应用中,计划范围具有多个决策阶段,并且不确定性随着时间的推移而逐渐显现。因此,MSP是一种可行的建模方法。MSP在能源、金融和调度等领域有许多应用。然而,众所周知,MSP模型在一般情况下很难解决,而且现有的解决方法经常无法解决实际大小问题。基于其应用潜力和最新解决方法的局限性,该程序旨在为MSP(特别是整数变量)做出基础性的算法和理论贡献,并将其应用扩展到各种领域。该程序的主题1将专注于开发能够克服MSP类问题,特别是涉及整数变量的MSP问题的建模和算法挑战的方法,并提供(可证明的)良好的可行策略。该方法将主要基于使用(线性)决策规则的新方法。特别是,将为具有整数变量的MSP模型开发新的决策规则。将分析所提出的方法的可操作性和所获得的解的质量。该程序的主题2将探索MSP的各种应用,如手术室调度、电力系统和投资组合优化。对于这些领域中的某些重要问题,将提出新的MSP模型,并将研究这些模型相对于确定性和两阶段随机规划模型的价值。研究结果将为决策者提供有价值的规划、调度和操作工具。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bodur, Merve其他文献

Two-stage linear decision rules for multi-stage stochastic programming
多阶段随机规划的两阶段线性决策规则
  • DOI:
    10.1007/s10107-018-1339-4
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Bodur, Merve;Luedtke, James R.
  • 通讯作者:
    Luedtke, James R.

Bodur, Merve的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bodur, Merve', 18)}}的其他基金

Multistage Stochastic Integer Programming: Approximate Solution Methods and Applications
多阶段随机整数规划:近似解法及应用
  • 批准号:
    RGPIN-2018-04984
  • 财政年份:
    2021
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Multistage Stochastic Integer Programming: Approximate Solution Methods and Applications
多阶段随机整数规划:近似解法及应用
  • 批准号:
    RGPIN-2018-04984
  • 财政年份:
    2020
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Multistage Stochastic Integer Programming: Approximate Solution Methods and Applications
多阶段随机整数规划:近似解法及应用
  • 批准号:
    RGPIN-2018-04984
  • 财政年份:
    2019
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Multistage Stochastic Integer Programming: Approximate Solution Methods and Applications
多阶段随机整数规划:近似解法及应用
  • 批准号:
    RGPIN-2018-04984
  • 财政年份:
    2018
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Multistage Stochastic Integer Programming: Approximate Solution Methods and Applications
多阶段随机整数规划:近似解法及应用
  • 批准号:
    DGECR-2018-00064
  • 财政年份:
    2018
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Launch Supplement

相似国自然基金

Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于梯度增强Stochastic Co-Kriging的CFD非嵌入式不确定性量化方法研究
  • 批准号:
    11902320
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Multistage Stochastic Integer Programming: Approximate Solution Methods and Applications
多阶段随机整数规划:近似解法及应用
  • 批准号:
    RGPIN-2018-04984
  • 财政年份:
    2021
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Multistage Stochastic Integer Programming: Approximate Solution Methods and Applications
多阶段随机整数规划:近似解法及应用
  • 批准号:
    RGPIN-2018-04984
  • 财政年份:
    2020
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Multistage Stochastic Integer Programming: Approximate Solution Methods and Applications
多阶段随机整数规划:近似解法及应用
  • 批准号:
    RGPIN-2018-04984
  • 财政年份:
    2019
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Multistage Stochastic Integer Programming: Approximate Solution Methods and Applications
多阶段随机整数规划:近似解法及应用
  • 批准号:
    RGPIN-2018-04984
  • 财政年份:
    2018
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Multistage Stochastic Integer Programming: Approximate Solution Methods and Applications
多阶段随机整数规划:近似解法及应用
  • 批准号:
    DGECR-2018-00064
  • 财政年份:
    2018
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Launch Supplement
Scalable Methods for Solving Stochastic Mixed-Integer Programs
求解随机混合整数程序的可扩展方法
  • 批准号:
    1634597
  • 财政年份:
    2016
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Standard Grant
Risk Averse Multistage Stochastic Integer Programming
风险规避多阶段随机整数规划
  • 批准号:
    1633196
  • 财政年份:
    2016
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Standard Grant
Decomposition and Duality: New Approaches to Integer and Stochastic Integer Programming
分解和对偶性:整数和随机整数规划的新方法
  • 批准号:
    DP140100985
  • 财政年份:
    2014
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Projects
Theory and Applications of Stochastic Bilevel Mixed-Integer Programming
随机双层混合整数规划理论与应用
  • 批准号:
    418627-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Theory and Applications of Stochastic Bilevel Mixed-Integer Programming
随机双层混合整数规划理论与应用
  • 批准号:
    418627-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了