Scalable Methods for Solving Stochastic Mixed-Integer Programs
求解随机混合整数程序的可扩展方法
基本信息
- 批准号:1634597
- 负责人:
- 金额:$ 39.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many decision problems in science, engineering, economic analysis, and public-sector applications involve both discrete decisions and uncertainty about future outcomes. Stochastic mixed-integer programming is an important mathematical modeling framework that allows for the systematic treatment of uncertainty in optimization problems that involve a large number of discrete, yes-no decisions. If successful, this work will form the basis of general-purpose software that can be used in a wide variety of planning problems in areas as diverse as electricity generation planning, military operations, supply chain planning, and forest fire response. The availability of methods to solve such problems will give decision makers the ability to make plans that are more robust in the face of uncertainty, leading to improved outcomes and more efficient use of scarce resources. The adoption of these techniques will be encouraged by integrating optimization modeling under uncertainty into courses taken by students in a variety of disciplines.This project will fuse algorithmic ideas from modern convex optimization, mixed-integer programming, and stochastic programming to obtain powerful tools for solving stochastic mixed-integer programs. New algorithms will be designed, convergence results will be obtained, and software will be produced. A vital ingredient of the approach is a variable-splitting decomposition combined with Lagrangian relaxation. Obtaining strong lower bounds in this approach requires optimization of the Lagrangian dual, a challenging mathematical problem of maximizing a high-dimensional, non-smooth, concave function, for which the costs of evaluating the function and its subgradients are high. The research team will investigate the translation of convex optimization techniques that have recently been shown to be successful in data analysis applications to solving this Lagrangian dual. The research team will also investigate the use of integer programming techniques to obtain convergence to an optimal solution, including strong branching and pseudocosts, cutting planes, and primal heuristics.
科学、工程、经济分析和公共部门应用中的许多决策问题既涉及离散决策,又涉及对未来结果的不确定性。随机混合整数规划是一种重要的数学建模框架,它允许系统地处理涉及大量离散的是-否决策的优化问题中的不确定性。如果成功,这项工作将成为通用软件的基础,该软件可用于发电规划、军事行动、供应链规划和森林火灾应对等不同领域的各种规划问题。解决这类问题的方法的可获得性将使决策者有能力在面临不确定性的情况下制定更稳健的计划,从而改善结果并更有效地利用稀缺资源。通过将不确定性下的优化建模整合到学生在不同学科的课程中,将鼓励采用这些技术。该项目将融合现代凸优化、混合整数规划和随机规划的算法思想,获得求解随机混合整数规划的强大工具。将设计新的算法,获得收敛结果,并编制软件。该方法的一个重要组成部分是变量分裂分解和拉格朗日松弛相结合。这种方法需要优化拉格朗日对偶,这是一个极具挑战性的数学问题,要最大化一个高维、非光滑、凹的函数,其计算函数及其次梯度的成本很高。研究小组将研究最近在数据分析应用中被证明成功的凸优化技术到求解拉格朗日对偶的转换。研究小组还将研究使用整数规划技术来获得收敛到最优解的方法,包括强分支和伪成本、割平面和原始启发式算法。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Complexity Analysis of Second-Order Line-Search Algorithms for Smooth Nonconvex Optimization
- DOI:10.1137/17m1134329
- 发表时间:2017-06
- 期刊:
- 影响因子:0
- 作者:C. Royer;Stephen J. Wright
- 通讯作者:C. Royer;Stephen J. Wright
Behavior of accelerated gradient methods near critical points of nonconvex functions
- DOI:10.1007/s10107-018-1340-y
- 发表时间:2017-06
- 期刊:
- 影响因子:2.7
- 作者:Michael O'Neill;Stephen J. Wright
- 通讯作者:Michael O'Neill;Stephen J. Wright
Inexact Variable Metric Stochastic Block-Coordinate Descent for Regularized Optimization
用于正则化优化的不精确变量度量随机块坐标下降
- DOI:10.1007/s10957-020-01639-4
- 发表时间:2020
- 期刊:
- 影响因子:1.9
- 作者:Lee, Ching-pei;Wright, Stephen J.
- 通讯作者:Wright, Stephen J.
Parallelizing subgradient methods for the Langrangian dual in stochastic mixed-integer programming
随机混合整数规划中朗格朗日对偶的并行次梯度方法
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Lim, Cong-Han;Linderoth, Jeffrey T;Luedtke, James R;Wright, Stephen J
- 通讯作者:Wright, Stephen J
Blended Conditional Gradients
混合条件梯度
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Braun, G;Pokutta, S;Wright, S
- 通讯作者:Wright, S
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Luedtke其他文献
New solution approaches for the maximum-reliability stochastic network interdiction problem
- DOI:
10.1007/s10287-018-0321-1 - 发表时间:
2018-06-16 - 期刊:
- 影响因子:1.300
- 作者:
Eli Towle;James Luedtke - 通讯作者:
James Luedtke
A Framework for Balancing Power Grid Efficiency and Risk with Bi-objective Stochastic Integer Optimization
双目标随机整数优化平衡电网效率与风险的框架
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Ramsey Rossmann;M. Anitescu;J. Bessac;Michael Ferris;Mitchell Krock;James Luedtke;Line A. Roald - 通讯作者:
Line A. Roald
Mixed-integer linear programming for scheduling unconventional oil field development
- DOI:
10.1007/s11081-020-09527-6 - 发表时间:
2020-07-10 - 期刊:
- 影响因子:1.700
- 作者:
Akhilesh Soni;Jeff Linderoth;James Luedtke;Fabian Rigterink - 通讯作者:
Fabian Rigterink
New valid inequalities and formulations for the static joint Chance-constrained Lot-sizing problem
- DOI:
10.1007/s10107-022-01847-y - 发表时间:
2022-06-21 - 期刊:
- 影响因子:2.500
- 作者:
Zeyang Zhang;Chuanhou Gao;James Luedtke - 通讯作者:
James Luedtke
Strong-branching inequalities for convex mixed integer nonlinear programs
- DOI:
10.1007/s10589-014-9690-8 - 发表时间:
2014-10-07 - 期刊:
- 影响因子:2.000
- 作者:
Mustafa Kılınç;Jeff Linderoth;James Luedtke;Andrew Miller - 通讯作者:
Andrew Miller
James Luedtke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Luedtke', 18)}}的其他基金
Collaborative Research: Staffing and Routing in Service Systems with Uncertain Arrival Rates: An Integrated Stochastic Programming and Asymptotic Analysis Approach
协作研究:到达率不确定的服务系统中的人员配置和路由:综合随机规划和渐近分析方法
- 批准号:
1130266 - 财政年份:2011
- 资助金额:
$ 39.96万 - 项目类别:
Standard Grant
CAREER: Risk Management via Stochastic Programming: Models, Computation, and Applications
职业:通过随机规划进行风险管理:模型、计算和应用
- 批准号:
0952907 - 财政年份:2010
- 资助金额:
$ 39.96万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Research on problem solving and extensions to analysis methods for longitudinal data
纵向数据问题求解及分析方法扩展研究
- 批准号:
23K11003 - 财政年份:2023
- 资助金额:
$ 39.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of numerical methods for solving unsteady shock waves stably and correctly and its application to shock wave interaction phenomena
稳定正确求解非定常冲击波数值方法的发展及其在冲击波相互作用现象中的应用
- 批准号:
23KJ0981 - 财政年份:2023
- 资助金额:
$ 39.96万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Fast numerical methods for solving large-scale matrix equations
求解大规模矩阵方程的快速数值方法
- 批准号:
23K19951 - 财政年份:2023
- 资助金额:
$ 39.96万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
SHF: Small: Efficient, Deterministic and Formally Certified Methods for Solving Low-dimensional Linear Programs with Floating-point Precision
SHF:小型:用于以浮点精度求解低维线性程序的高效、确定性且经过正式认证的方法
- 批准号:
2312220 - 财政年份:2023
- 资助金额:
$ 39.96万 - 项目类别:
Standard Grant
Methods for Solving Nonlinear Differential Equations Describing Water Waves
求解描述水波的非线性微分方程的方法
- 批准号:
RGPIN-2020-06417 - 财政年份:2022
- 资助金额:
$ 39.96万 - 项目类别:
Discovery Grants Program - Individual
Improved Numerical Methods for Solving Optimal Control Problems with Nonsmooth and Singular Solutions
解决具有非光滑和奇异解的最优控制问题的改进数值方法
- 批准号:
2031213 - 财政年份:2021
- 资助金额:
$ 39.96万 - 项目类别:
Standard Grant
Improving Students’ Creative Problem Solving Skills in Engineering using Visual Representation Methods
使用视觉表示方法提高学生创造性解决工程问题的能力
- 批准号:
2120820 - 财政年份:2021
- 资助金额:
$ 39.96万 - 项目类别:
Standard Grant
RUI: Development of Fast Methods for Solving the Boltzmann Equation through Reduced Order Models, Machine Learning, and Optimal Transport
RUI:开发通过降阶模型、机器学习和最优传输求解玻尔兹曼方程的快速方法
- 批准号:
2111612 - 财政年份:2021
- 资助金额:
$ 39.96万 - 项目类别:
Standard Grant
Methods for Solving Nonlinear Differential Equations Describing Water Waves
求解描述水波的非线性微分方程的方法
- 批准号:
RGPIN-2020-06417 - 财政年份:2021
- 资助金额:
$ 39.96万 - 项目类别:
Discovery Grants Program - Individual
Proposal of Problem-solving Methods for Resident's Awareness for Tourism during COVID-19
COVID-19期间居民旅游意识问题解决方法建议
- 批准号:
21K12464 - 财政年份:2021
- 资助金额:
$ 39.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)