Improving Finite Volume Methods for Industrial CFD: Adaptation, Error Quantification, and Robust Convergence

改进工业 CFD 的有限体积方法:适应、误差量化和鲁棒收敛

基本信息

  • 批准号:
    537052-2018
  • 负责人:
  • 金额:
    $ 4.3万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Collaborative Research and Development Grants
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

As computer power has grown, the complexity of problems simulated using computational fluid dynamics (CFD) has grown apace. Greater emphasis is also being placed on quantifying the accuracy of simulation results. Existing techniques for this task often have prohibitively large computational resource requirements.Addressing this need requires a new paradigm in which a robust flow solver with adaptive and error quantification capabilities reliably produces solutions with known error bounds with minimal human intervention. This project will prototype new techniques for estimating and reducing numerical error in simulation of flow problems, and for making commercial CFD software more efficient and able to compute solutions more robustly. We will do this work in a unified framework compatible with the second-order unstructured mesh finite volume methods employed in modern commercial CFD solvers. We expect that these advances can begin to be deployed in current commercial CFD solvers within two to five years. We will also work with ANSYS Canada to assess the use of new algorithms developed in our previous collaborative project in combination with their existing commercial flow solver. While the present work will focus on second-order methods, we expect that more accurate finite volume methods will migrate into commercial CFD solvers, and we will plan for a clear upgrade path to providing adaptation and robustness improvements for high order methods in the five to ten year time frame.These advances will provide an important competitive advantage to our industrial partner in this project, ANSYS Canada, as the vendor whose software will be the first to provide these capabilities. In turn, their Canadian customers will benefit through improved accuracy of and confidence in simulation results and increased productivity of engineers using CFD.
随着计算机能力的增强,使用计算流体动力学(CFD)模拟问题的复杂性也迅速增长。此外,还更加重视量化模拟结果的准确性。现有技术对计算资源的要求往往高得令人望而却步,为了满足这一需求,需要一个具有自适应和误差量化能力的健壮的流解算器以最小的人工干预可靠地产生具有已知误差界的解。该项目将原型新的技术,以估计和减少流动问题模拟中的数值误差,并使商业CFD软件更有效,能够更强大地计算解决方案。我们将在一个与现代商业CFD解算器中使用的二阶非结构网格有限体积方法兼容的统一框架下进行这项工作。我们预计,在两到五年内,这些进步可以开始在当前的商业CFD解算器中部署。我们还将与Ansys加拿大公司合作,评估在我们之前的合作项目中开发的新算法与他们现有的商业流动解算器的使用情况。虽然目前的工作将集中在二阶方法上,但我们预计更精确的有限体积方法将移植到商业CFD求解器中,我们将计划在五到十年的时间框架内提供一条明确的升级途径,为高阶方法提供适应性和健壮性改进。这些进步将为我们在该项目中的工业合作伙伴--加拿大的Ansys提供一个重要的竞争优势,因为它的软件将是第一个提供这些功能的供应商。反过来,他们的加拿大客户将从提高模拟结果的准确性和信心以及提高使用CFD的工程师的生产率中受益。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

OllivierGooch, CarlCF其他文献

OllivierGooch, CarlCF的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Finite-time Lyapunov 函数和耦合系统的稳定性分析
  • 批准号:
    11701533
  • 批准年份:
    2017
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Precision Physics in Finite and Infinite Volume
有限和无限体积中的精密物理
  • 批准号:
    EP/X021971/1
  • 财政年份:
    2023
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Fellowship
Confinement and Conformality in Theories with Massless Fermions using Finite Volume Analysis
使用有限体积分析的无质量费米子理论中的约束和共形
  • 批准号:
    2310479
  • 财政年份:
    2023
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Continuing Grant
CAREER: Three-manifolds with finite volume, their geometry, representations, and complexity
职业:有限体积的三流形、它们的几何形状、表示形式和复杂性
  • 批准号:
    2142487
  • 财政年份:
    2022
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Continuing Grant
Adaptively Tuned High-Order Unstructured Finite-Volume Methods for Turbulent Flows
湍流的自适应调整高阶非结构化有限体积方法
  • 批准号:
    EP/W037092/1
  • 财政年份:
    2022
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Research Grant
CAREER: Few-Body Physics in Finite Volume
职业:有限体积中的少体物理学
  • 批准号:
    2044632
  • 财政年份:
    2021
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Continuing Grant
Improving Finite Volume Methods for Industrial CFD: Adaptation, Error Quantification, and Robust Convergence
改进工业 CFD 的有限体积方法:适应、误差量化和鲁棒收敛
  • 批准号:
    537052-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Collaborative Research and Development Grants
Frontiers of QCD/hadron physics pioneered by extreme finite volume
极端有限体积开创的 QCD/强子物理前沿
  • 批准号:
    20K14476
  • 财政年份:
    2020
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Improving Finite Volume Methods for Industrial CFD: Adaptation, Error Quantification, and Robust Convergence
改进工业 CFD 的有限体积方法:适应、误差量化和鲁棒收敛
  • 批准号:
    537052-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Collaborative Research and Development Grants
Improving Finite Volume Methods for Industrial CFD: Adaptation, Error Quantification, and Robust Convergence
改进工业 CFD 的有限体积方法:适应、误差量化和鲁棒收敛
  • 批准号:
    537052-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Collaborative Research and Development Grants
Finite Volume Analysis of Relativistic Field Theories Using Lattice Regularization
使用格正则化的相对论场论的有限体积分析
  • 批准号:
    1913010
  • 财政年份:
    2019
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了