Advanced integrated Control and Monitoring of Actuation Systems
驱动系统的先进集成控制和监控
基本信息
- 批准号:RGPIN-2020-05735
- 负责人:
- 金额:$ 2.84万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Product quality and reliability continue to be amongst the top priorities of manufacturers, and these must be maintained in spite of the need for lower costs. The demands placed on equipment suppliers to assure quality and reliability of the products they produce is increasing. Advanced control combined with advanced condition monitoring are increasingly important and are becoming integral and essential elements of next generation products. Fault Detection and Diagnosis (FDD) and condition monitoring systems are instrumental to improving reliability in the context of manufacturing or operation of systems. The benefits of FDD systems for preventative unscheduled maintenance, for end-of-line production testing, and for potential advanced control to compensate for component degradations are huge. FDD strategies can be model-based or signal-based. Model-based strategies are very effective but are used for systems that can be mathematically modeled. For complex systems for which a meaningful mathematical model is either not available or cannot be derived, signal-based strategies have to be used. This proposal considers the combined application of signal-based and model-based strategies for the condition monitoring and FDD of actuation systems. Condition monitoring will feed into and provide information for the adaptive modification of an advanced feedforward robust control strategy for better performance and for degradation compensation. An Electro-Hydrostatic Actuation (EHA) system used in aerospace will be considered as the application domain in this research. Model-based condition monitoring use estimation strategies. The model-based strategy considered in this proposal will be based on the Smooth Variable Structure Filter (SVSF). The SVSF is a robust filter with features that are uniquely suitable for condition monitoring; it can better accommodate uncertainties due to fault conditions in the system that is being monitored both in terms of its performance and its stability. In general, real-world systems behave according to a number of different operating regimes (or modes). Operating modes can also imply fault conditions. A strategy that can track mode changes in dynamic systems is the Interacting Multiple Model (IMM) concept. As part of its implementation, the IMM requires an estimation strategy. In this research, a new derivation of the SVSF will be combined with IMM to track changes due to fault conditions as part of an enhanced condition monitoring and robust control strategy. For fault conditions that cannot be easily modeled and exhibit a periodic nature, a signal-based strategy will be used. The results from condition monitoring would feed into a robust sliding mode controller that would adapt its feedforward term according to the mode of the actuation system as determined by the above mentioned SVSF/IMM method. Robust refinement of the control input combined with condition monitoring are transformative to the actuation industry.
产品质量和可靠性仍然是制造商的首要任务之一,尽管需要较低的成本,但必须保持这些优先级。设备供应商确保其生产产品的质量和可靠性的需求正在增加。高级控制与高级条件监测的结合越来越重要,并且正在成为下一代产品的组成部分和基本要素。故障检测和诊断(FDD)和状态监控系统对在制造或系统运行的背景下可靠性提高了可靠性。 FDD系统对预防性外界维护,线结束生产测试以及潜在的高级控制以补偿组件降低的好处是巨大的。 FDD策略可以基于模型或基于信号。基于模型的策略非常有效,但用于可以通过数学建模的系统。对于不可用或无法得出有意义的数学模型的复杂系统,必须使用基于信号的策略。该建议考虑了基于信号和基于模型的策略在驱动系统的状况监测和FDD中的合并应用。条件监控将进食并提供信息,以自适应修改高级馈电稳健控制策略,以提高性能和退化补偿。航空航天中使用的电静电驱动(EHA)系统将被视为本研究中的应用领域。基于模型的条件监视使用估计策略。本提案中考虑的基于模型的策略将基于平滑可变结构过滤器(SVSF)。 SVSF是一个可靠的滤波器,具有适合条件监控的特征;由于系统中的故障状况,它在其性能和稳定性方面都可以更好地适应不确定性。通常,现实世界系统根据许多不同的操作制度(或模式)行事。操作模式也可能意味着故障条件。可以跟踪动态系统模式变化的策略是相互作用的多个模型(IMM)概念。作为实施的一部分,IMM需要估算策略。在这项研究中,SVSF的新推导将与IMM相结合,以跟踪由于故障条件而导致的变化,这是增强的状况监测和稳健的控制策略的一部分。对于无法轻松建模并表现出周期性的断层条件,将使用基于信号的策略。条件监控的结果将进出一个可靠的滑动模式控制器,该控制器将根据上述SVSF/INM方法确定的致动系统模式调整其前馈期限。对控制输入与条件监测结合的强大完善是对驱动行业的变化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Habibi, Saeid其他文献
Low Temperature, Current Dependent Battery State Estimation Using Interacting Multiple Model Strategy
- DOI:
10.1109/access.2021.3095938 - 发表时间:
2021-01-01 - 期刊:
- 影响因子:3.9
- 作者:
Messing, Marvin;Rahimifard, Sara;Habibi, Saeid - 通讯作者:
Habibi, Saeid
BATTERY STATE OF CHARGE ESTIMATION USING AN ARTIFICIAL NEURAL NETWORK
- DOI:
10.1109/itec.2017.7993295 - 发表时间:
2017-01-01 - 期刊:
- 影响因子:0
- 作者:
Ismail, Mahmoud;Dlyma, Rioch;Habibi, Saeid - 通讯作者:
Habibi, Saeid
Kalman and Smooth Variable Structure Filters for Robust Estimation
- DOI:
10.1109/taes.2014.110768 - 发表时间:
2014-04-01 - 期刊:
- 影响因子:4.4
- 作者:
Gadsden, Stephen Andrew;Habibi, Saeid;Kirubarajan, Thia - 通讯作者:
Kirubarajan, Thia
Estimating battery state of health using electrochemical impedance spectroscopy and the relaxation effect
- DOI:
10.1016/j.est.2021.103210 - 发表时间:
2021-09-10 - 期刊:
- 影响因子:9.4
- 作者:
Messing, Marvin;Shoa, Tina;Habibi, Saeid - 通讯作者:
Habibi, Saeid
Parameter identification in a high performance hydrostatic actuation system using the Unscented Kalman Filter
- DOI:
10.1139/tcsme-2006-0024 - 发表时间:
2006-01-01 - 期刊:
- 影响因子:0.9
- 作者:
Chinniah, Yuvin;Habibi, Saeid;Sampson, Eric - 通讯作者:
Sampson, Eric
Habibi, Saeid的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Habibi, Saeid', 18)}}的其他基金
Maximizing Information Extraction in Smart Condition Monitoring Systems
最大限度地提取智能状态监测系统中的信息
- 批准号:
CRC-2020-00127 - 财政年份:2022
- 资助金额:
$ 2.84万 - 项目类别:
Canada Research Chairs
Advanced integrated Control and Monitoring of Actuation Systems
驱动系统的先进集成控制和监控
- 批准号:
RGPIN-2020-05735 - 财政年份:2021
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Maximizing Information Extraction In Smart Condition Monitoring Systems
最大限度地提取智能状态监测系统中的信息
- 批准号:
CRC-2020-00127 - 财政年份:2021
- 资助金额:
$ 2.84万 - 项目类别:
Canada Research Chairs
Condition monitoring and testing of powertrain elements
动力总成元件的状态监测和测试
- 批准号:
549016-2019 - 财政年份:2021
- 资助金额:
$ 2.84万 - 项目类别:
Alliance Grants
Hybrid Electric Vehicle Powertrain Design and Development
混合动力电动汽车动力总成设计与开发
- 批准号:
482038-2016 - 财政年份:2021
- 资助金额:
$ 2.84万 - 项目类别:
Collaborative Research and Training Experience
Tool for qualitative performance comparison of internal combustion engines components using optimized engine calibration and condition monitoring
使用优化的发动机校准和状态监测对内燃机部件进行定性性能比较的工具
- 批准号:
522411-2017 - 财政年份:2020
- 资助金额:
$ 2.84万 - 项目类别:
Collaborative Research and Development Grants
Condition monitoring and testing of powertrain elements
动力总成元件的状态监测和测试
- 批准号:
549016-2019 - 财政年份:2020
- 资助金额:
$ 2.84万 - 项目类别:
Alliance Grants
Advanced integrated Control and Monitoring of Actuation Systems
驱动系统的先进集成控制和监控
- 批准号:
RGPIN-2020-05735 - 财政年份:2020
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Maximizing Information Extraction in Smart Condition Monitoring Systems
最大限度地提取智能状态监测系统中的信息
- 批准号:
1000233074-2019 - 财政年份:2020
- 资助金额:
$ 2.84万 - 项目类别:
Canada Research Chairs
NSERC / Ford Canada Industrial Research Chair in Hybrid/Electric Vehicle (HEV) Powertrain Diagnostics
NSERC / 福特加拿大混合动力/电动汽车 (HEV) 动力总成诊断工业研究主席
- 批准号:
411833-2015 - 财政年份:2020
- 资助金额:
$ 2.84万 - 项目类别:
Industrial Research Chairs
相似国自然基金
数据-知识融合驱动的半导体硅单晶质量监控与批次学习控制方法研究
- 批准号:62303376
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于青稞酒质量控制的光谱数据融合分析方法研究
- 批准号:22363010
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
鲁棒自适应多模型信息融合预见控制及其在倾转旋翼机中的应用研究
- 批准号:62303251
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
数据与模型融合驱动的旋流器分级过程运行优化控制方法
- 批准号:52304309
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
融合自适应观测器的液压锚杆钻机全局滑模抗饱和控制方法
- 批准号:62303464
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Yale-METRO Metropolitan Emergency Trial netwoRK to advance patient Outcomes
耶鲁大学-METRO 大都会紧急试验网络可改善患者的治疗效果
- 批准号:
10552382 - 财政年份:2023
- 资助金额:
$ 2.84万 - 项目类别:
Advanced integrated Control and Monitoring of Actuation Systems
驱动系统的先进集成控制和监控
- 批准号:
RGPIN-2020-05735 - 财政年份:2021
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Using predictive analytics to tailor care for patients with newly diagnosed type 2 diabetes
使用预测分析为新诊断的 2 型糖尿病患者量身定制护理
- 批准号:
10286549 - 财政年份:2021
- 资助金额:
$ 2.84万 - 项目类别: