Cooperative adaptive cruise control with vehicle trajectory prediction using machine learning techniques
使用机器学习技术进行车辆轨迹预测的协作式自适应巡航控制
基本信息
- 批准号:571295-2021
- 负责人:
- 金额:$ 1.82万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Alliance Grants
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The number of vehicles on roads and highways has soared in recent years and we are witnessing more traffic congestion and vehicle accidents on streets. To address these issues, car manufacturers have been developing advanced driver assistance systems (ADAS). This research proposal aims to improve adaptive cruise control (ACC) system performance by using vehicular communication and machine learning techniques. ACC relies on onboard sensors to adjust a vehicle's speed with the speed of the preceding vehicle. Since ACC performance is restricted by its sensing range, cooperative adaptive cruise control (CACC) has emerged to supplant on-board sensors with vehicular communication to exchange information between the vehicles. The main objective of this research proposal is to leverage machine learning techniques to predict vehicles trajectories in CACC. We will use the long short term memory (LSTM) deep model to predict the position of target vehicles at future time steps. This research proposal will have several benefits. Firstly, it contributes to traffic safety because the proposed system will be able to predict a collision situation and warn the driver in advance. Furthermore, our system has the potential to increase highway capacity. This is mainly because in the proposed CACC, a constant time headway gap policy will be deployed. That is to say, the distance between the following vehicles will be proportional to their speed; the higher the speed, the larger the distance. The third impact of our CACC is reducing fuel consumption because of vehicles' constant speed and less air resistance when following each other. Finally, through this international research collaboration, the University of Windsor in Canada and Leeds University in the UK can share their infrastructure, experiences, data, and methods in the field of fully automated vehicles. It can create a unique opportunity to train HQPs in the emerging fields of vehicular communication and deep learning, and exchange students and researchers in the future. HQPs will expand their network by meeting potential future collaborators, learn new skills, and gain a new perspective.
近年来,道路和高速公路上的车辆数量激增,我们目睹了更多的交通拥堵和街道上的交通事故。为了解决这些问题,汽车制造商一直在开发先进的驾驶辅助系统(ADAS)。本研究计划旨在利用车辆通讯和机器学习技术,改善自适应巡航控制(ACC)系统的性能。ACC依靠车载传感器根据前车的速度来调整车速。由于自适应巡航控制的性能受其感知范围的限制,协作式自适应巡航控制(cooperative adaptive cruise control, CACC)应运而生,以车载通信取代车载传感器,实现车辆间的信息交换。本研究计划的主要目标是利用机器学习技术来预测CACC中的车辆轨迹。我们将使用长短期记忆(LSTM)深度模型来预测目标车辆在未来时间步长的位置。这项研究计划将有几个好处。首先,它有助于交通安全,因为所提出的系统将能够预测碰撞情况并提前警告驾驶员。此外,我们的系统有潜力增加高速公路的通行能力。这主要是因为在拟议的CACC中,将采用恒定时距差距政策。也就是说,后面车辆之间的距离将与它们的速度成正比;速度越高,距离越远。我们的CACC的第三个影响是减少燃料消耗,因为车辆的恒定速度和空气阻力较小时,彼此跟随。最后,通过这项国际研究合作,加拿大温莎大学和英国利兹大学可以分享他们在全自动驾驶汽车领域的基础设施、经验、数据和方法。它可以创造一个独特的机会,在车载通信和深度学习等新兴领域培养hqp,并在未来交换学生和研究人员。hqp将通过会见潜在的未来合作者、学习新技能和获得新视角来扩展他们的网络。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alirezaee, ShahpourSDR其他文献
Alirezaee, ShahpourSDR的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alirezaee, ShahpourSDR', 18)}}的其他基金
Learning-based autonomous robotic system for package sorting application
用于包裹分拣应用的基于学习的自主机器人系统
- 批准号:
575195-2022 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Alliance Grants
相似国自然基金
下一代无线通信系统自适应调制技术及跨层设计研究
- 批准号:60802033
- 批准年份:2008
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
由蝙蝠耳轮和鼻叶推导新型仿生自适应波束模型的研究
- 批准号:10774092
- 批准年份:2007
- 资助金额:39.0 万元
- 项目类别:面上项目
相似海外基金
VIPAuto: Robust and Adaptive Visual Perception for Automated Vehicles in Complex Dynamic Scenes
VIPAuto:复杂动态场景中自动驾驶车辆的鲁棒自适应视觉感知
- 批准号:
EP/Y015878/1 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Fellowship
Adaptive Artificial Receptors for Biomimetic Functions
仿生功能的自适应人工受体
- 批准号:
MR/X023303/1 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Fellowship
Efficient and unbiased estimation in adaptive platform trials
自适应平台试验中的高效且公正的估计
- 批准号:
MR/X030261/1 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Research Grant
Directed and adaptive evolution of photosynthetic systems
光合系统的定向和适应性进化
- 批准号:
MR/Y011635/1 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Fellowship
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
- 批准号:
2316612 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
- 批准号:
2316615 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
RII Track-4:NSF: HEAL: Heterogeneity-aware Efficient and Adaptive Learning at Clusters and Edges
RII Track-4:NSF:HEAL:集群和边缘的异质性感知高效自适应学习
- 批准号:
2327452 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335802 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335801 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant














{{item.name}}会员




