Faults Detection and Recovery in Automobile Engines Machining and Assembly Systems Using AI and Machine Learning
使用人工智能和机器学习对汽车发动机加工和装配系统进行故障检测和恢复
基本信息
- 批准号:571096-2021
- 负责人:
- 金额:$ 2.96万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Alliance Grants
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Ford automobile engine plant in Windsor was re-tooled recently to build new engines used in Ford's F-series trucks. The engine production system contains advanced machining and assembly lines. These complex systems encounter faults and breakdowns during operation, which result in delays and waste of valuable time and resources and could disrupt the supply chain. This project aims to research, in cooperation with Ford, smart methods for recognizing patterns of faults and their causes and develop recovery strategies based on artificial intelligence (AI) and Machine Learning (ML) using data analytics, neural networks, and deep learning methods. Ford is already implementing fourth industrial revolution (I4.0) smart manufacturing technologies and the current research project will support the digital transformation and intelligence of manufacturing plants at Ford and beyond. The manufacturing sector in Canada contributes up to 1.7 million full-time, well-paying jobs all across the country. Manufacturing represents more than 10% of Canada's GDP. The planned research helps Canada's manufacturing sector be competitive with the industrial world as new enabling technologies of intelligent manufacturing emerge. Large, medium, and small manufacturers are keen to improve their competency and upskilling/reskilling their workforce in digitalization and applications of smart technologies to reap their benefits and remain competitive. The proposed research collaboration is also expected to produce intelligent technologies and will createsignificant opportunities for training highly qualified personnel (HQP) in real-world applications of I4.0 and AI in manufacturing. It will provide valuable knowledge and experiential learning in a manufacturingenvironment, where trained HQPs are in short supply in Canada, and create future employment opportunities.
位于温莎的福特汽车发动机工厂最近进行了重新装备,以生产用于福特f系列卡车的新发动机。发动机生产系统包含先进的机加工和装配线。这些复杂的系统在运行过程中会遇到故障和故障,导致延误,浪费宝贵的时间和资源,并可能破坏供应链。该项目旨在与福特合作,研究识别故障模式及其原因的智能方法,并利用数据分析、神经网络和深度学习方法,基于人工智能(AI)和机器学习(ML)开发恢复策略。福特已经在实施第四次工业革命(I4.0)智能制造技术,目前的研究项目将支持福特及其他公司制造工厂的数字化转型和智能化。加拿大的制造业为全国贡献了170万个全职高薪工作。制造业占加拿大GDP的10%以上。随着智能制造新技术的出现,计划中的研究有助于加拿大制造业在工业世界中具有竞争力。大、中、小型制造商都渴望在数字化和智能技术应用方面提高自己的能力,提高员工的技能/再培训,以获得收益并保持竞争力。拟议的研究合作也有望产生智能技术,并将为在工业4.0和人工智能在制造业的实际应用中培养高素质人才(HQP)创造重要机会。它将在制造业环境中提供有价值的知识和经验学习,在加拿大训练有素的hqp供不应求,并创造未来的就业机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ElMaraghy, WaguihWH其他文献
ElMaraghy, WaguihWH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Collaborative Research: CPS: Medium: Sensor Attack Detection and Recovery in Cyber-Physical Systems
合作研究:CPS:中:网络物理系统中的传感器攻击检测和恢复
- 批准号:
2333980 - 财政年份:2023
- 资助金额:
$ 2.96万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
- 批准号:
2319370 - 财政年份:2023
- 资助金额:
$ 2.96万 - 项目类别:
Standard Grant
Research on aspiration detection and recovery of swallowing function
误吸检测与吞咽功能恢复的研究
- 批准号:
23KJ0966 - 财政年份:2023
- 资助金额:
$ 2.96万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
- 批准号:
2319371 - 财政年份:2023
- 资助金额:
$ 2.96万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
- 批准号:
2319372 - 财政年份:2023
- 资助金额:
$ 2.96万 - 项目类别:
Standard Grant
ERI: Operator-Automation Shared Protection for Security and Safety Assured Industrial Control Systems: Learning, Detection, and Recovery Control
ERI:操作员自动化共享保护,确保工业控制系统安全:学习、检测和恢复控制
- 批准号:
2301543 - 财政年份:2023
- 资助金额:
$ 2.96万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Sensor Attack Detection and Recovery in Cyber-Physical Systems
合作研究:CPS:中:网络物理系统中的传感器攻击检测和恢复
- 批准号:
2143274 - 财政年份:2022
- 资助金额:
$ 2.96万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Sensor Attack Detection and Recovery in Cyber-Physical Systems
合作研究:CPS:中:网络物理系统中的传感器攻击检测和恢复
- 批准号:
2143256 - 财政年份:2022
- 资助金额:
$ 2.96万 - 项目类别:
Standard Grant
ADER (Automated Detection, Ejection & Recovery)
ADER(自动检测、弹出
- 批准号:
10020988 - 财政年份:2022
- 资助金额:
$ 2.96万 - 项目类别:
Collaborative R&D
NSERC/Hydro-Québec/Thales Industrial Research Chair in Smart Grid Security: Detection, Prevention, Mitigation and Recovery from Cyber-Physical Attacks
NSERC/Hydro-Québec/Thales 智能电网安全工业研究主席:网络物理攻击的检测、预防、缓解和恢复
- 批准号:
501621-2015 - 财政年份:2020
- 资助金额:
$ 2.96万 - 项目类别:
Industrial Research Chairs














{{item.name}}会员




