Machine Learning Assisted Decision Support Platform for Radiation Treatment Assessment

用于放射治疗评估的机器学习辅助决策支持平台

基本信息

  • 批准号:
    RGPIN-2022-04163
  • 负责人:
  • 金额:
    $ 2.48万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

The delivery of radiation for the treatment of cancer is a complicated process that requires both clinical and technical expertise. Although radiation treatments are safe and effective, there is a potential for errors in how treatments are designed and delivered that could lead to adverse patient outcomes. The current quality assurance process in radiation oncology requires substantial resources that leverages the collective experience of the radiation medicine team to ensure quality and safely, while minimizing the likelihood of errors. My lab has previously developed a novel proof-of-concept machine learning (ML) framework for automating the treatment quality review process that codifies the shared knowledge of the expert radiation medicine team to prioritize complex cases based on imaging, anatomical, technical, and dosimetric features. ML provides the ability to augment human tasks as well as integrate clinical decision making into the clinical process which forms the basis of the proposed research program. The ability to use ML to predict the quality of radiation treatments and understand radiation treatments which have potentially anomalous features can be used to 1) expedite the peer review process, 2) ensure higher quality treatments by flagging radiation treatments that are more likely to require attention or be erroneous, and 3) inform clinical management for complex processes that require real-time clinical decisions. Objectives: The overarching hypothesis of the proposed research program is that ML-assisted insights of treatment quality will be essential components of the radiation oncology process to ensure patients receive high quality and timely radiation treatments. The proposed research program will develop a quality radiation oncology platform built on novel ML methods with the following objectives: i) Build and deploy a dedicated ML-based quality platform to prioritize radiation treatments for review by the expert radiation medicine team based on treatment complexity and highlight treatments with potential errors requiring attention prior to treatment approvals. ii) Develop a real-time quality platform for adaptive radiation treatments that incorporates time-series imaging data and anatomical information over the course of treatment to ensure updates to treatments are appropriate based on the patients' changing anatomy. Outcomes and Significance: The novel technical developments from the proposed research program include: i) generating new outlier detection models with human understandable output to enable ML-assisted decision support for treatment review in peer review rounds and incorporating time-series data to provide real-time decision support for adaptive radiation treatments. The proposed research has direct applicability and significance for improving the workflow of quality processes in radiation oncology and enabling improved cancer care in addition to enabling patients more timely access to complex treatments.
放射治疗癌症是一个复杂的过程,需要临床和技术上的专业知识。尽管放射治疗是安全有效的,但在治疗的设计和实施过程中可能会出现错误,从而导致患者的不良后果。目前放射肿瘤学的质量保证过程需要大量的资源,利用放射医学团队的集体经验来确保质量和安全,同时最大限度地减少错误的可能性。我的实验室之前开发了一种新的概念验证机器学习(ML)框架,用于自动化治疗质量审查过程,该框架将专家放射医学团队的共享知识编纂成法律,以根据成像、解剖、技术和剂量学特征对复杂病例进行优先排序。ML提供了增强人工任务的能力,并将临床决策整合到临床过程中,这构成了拟议研究计划的基础。使用ML预测放射治疗质量并了解具有潜在异常特征的放射治疗的能力可用于1)加快同行评审过程,2)通过标记更可能需要注意或错误的放射治疗来确保更高质量的治疗,以及3)为需要实时临床决策的复杂过程提供临床管理信息。目标:该研究计划的首要假设是,机器学习辅助的治疗质量洞察将成为放射肿瘤学过程的重要组成部分,以确保患者接受高质量和及时的放射治疗。拟议的研究项目将开发一个基于新型机器学习方法的高质量放射肿瘤学平台,其目标如下:i)建立和部署一个专门的基于机器学习的质量平台,根据治疗复杂性优先考虑放射治疗,供放射医学专家团队审查,并在治疗批准前突出需要注意的潜在错误治疗。ii)开发适应放射治疗的实时质量平台,在治疗过程中整合时间序列成像数据和解剖信息,以确保根据患者不断变化的解剖结构更新治疗。结果和意义:该研究计划的新技术发展包括:i)生成具有人类可理解输出的新的异常值检测模型,使机器学习辅助决策支持同行评议回合的治疗审查,并结合时间序列数据为适应性放射治疗提供实时决策支持。本研究对于改善放射肿瘤学质量流程的工作流程,改善癌症护理,使患者能够更及时地获得复杂的治疗具有直接的适用性和意义。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Purdie, Thomas其他文献

Lung sparing and dose escalation in a robust-inspired IMRT planning method for lung radiotherapy that accounts for intrafraction motion
  • DOI:
    10.1118/1.4805101
  • 发表时间:
    2013-06-01
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    McCann, Claire;Purdie, Thomas;Bissonnette, Jean-Pierre
  • 通讯作者:
    Bissonnette, Jean-Pierre

Purdie, Thomas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Purdie, Thomas', 18)}}的其他基金

Advancing Personalized Cancer Care with an Automated Radiomics-Based Radiation Therapy Method
利用基于放射组学的自动化放射治疗方法推进个性化癌症护理
  • 批准号:
    508465-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Collaborative Health Research Projects
Advancing Personalized Cancer Care with an Automated Radiomics-Based Radiation Therapy Method
利用基于放射组学的自动化放射治疗方法推进个性化癌症护理
  • 批准号:
    508465-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Collaborative Health Research Projects
Improving quality and patient safety in radiation therapy by integrating multi-disciplinary criteria into an artificial intelligence system
通过将多学科标准整合到人工智能系统中,提高放射治疗的质量和患者安全
  • 批准号:
    446596-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Collaborative Health Research Projects
Improving quality and patient safety in radiation therapy by integrating multi-disciplinary criteria into an artificial intelligence system
通过将多学科标准整合到人工智能系统中,提高放射治疗的质量和患者安全
  • 批准号:
    446596-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Collaborative Health Research Projects

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
  • 批准号:
    62003314
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
  • 批准号:
    61902016
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
  • 批准号:
    61806040
  • 批准年份:
    2018
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
  • 批准号:
    51769027
  • 批准年份:
    2017
  • 资助金额:
    38.0 万元
  • 项目类别:
    地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
  • 批准号:
    61573081
  • 批准年份:
    2015
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
  • 批准号:
    61572533
  • 批准年份:
    2015
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目
E-Learning中学习者情感补偿方法的研究
  • 批准号:
    61402392
  • 批准年份:
    2014
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

A framework for machine learning assisted directed evolution of plastic-degrading enzymes
机器学习辅助塑料降解酶定向进化的框架
  • 批准号:
    10059716
  • 财政年份:
    2023
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Launchpad
Collaborative Research: Machine Learning-assisted Ultrafast Physical Vapor Deposition of High Quality, Large-area Functional Thin Films
合作研究:机器学习辅助超快物理气相沉积高质量、大面积功能薄膜
  • 批准号:
    2226918
  • 财政年份:
    2023
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
Discovery of early immunologic biomarkers for risk of PTLDS through machine learning-assisted broad temporal profiling of humoral immune response
通过机器学习辅助的体液免疫反应的广泛时间分析发现 PTLDS 风险的早期免疫生物标志物
  • 批准号:
    10738144
  • 财政年份:
    2023
  • 资助金额:
    $ 2.48万
  • 项目类别:
Computer-assisted diagnosis of ear pathologies by combining digital otoscopy with complementary data using machine learning
通过使用机器学习将数字耳镜与补充数据相结合来计算机辅助诊断耳部病变
  • 批准号:
    10564534
  • 财政年份:
    2023
  • 资助金额:
    $ 2.48万
  • 项目类别:
Collaborative Research: Machine Learning-assisted Ultrafast Physical Vapor Deposition of High Quality, Large-area Functional Thin Films
合作研究:机器学习辅助超快物理气相沉积高质量、大面积功能薄膜
  • 批准号:
    2226908
  • 财政年份:
    2023
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
Machine Learning Supported Assisted Travel
机器学习支持的辅助出行
  • 批准号:
    10059513
  • 财政年份:
    2023
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Grant for R&D
Machine learning assisted modelling and discovery of materials for low-carbon hydrogen production
机器学习辅助低碳制氢材料的建模和发现
  • 批准号:
    2868712
  • 财政年份:
    2023
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Studentship
(Inter)facing the Bitter Truth: How to Design Better Interfaces in Next-Gen Batteries using Atomistic Simulations Assisted by Machine-Learning
(交互)面对痛苦的真相:如何使用机器学习辅助的原子模拟设计下一代电池中更好的界面
  • 批准号:
    2886070
  • 财政年份:
    2023
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Studentship
Development of heat-resistant cast aluminum alloys assisted by machine learning
机器学习辅助耐热铸造铝合金的开发
  • 批准号:
    23KJ0143
  • 财政年份:
    2023
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Metal extraction using biocompatible ionic liquid system assisted by machine learning
机器学习辅助下使用生物相容性离子液体系统提取金属
  • 批准号:
    22KF0286
  • 财政年份:
    2023
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了