Developing personalized persuasive technologies using an adaptive and data-driven approach

使用自适应和数据驱动的方法开发个性化说服技术

基本信息

  • 批准号:
    RGPIN-2022-03689
  • 负责人:
  • 金额:
    $ 1.82万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Persuasive technologies (PT) are interactive systems that motivate and help people adopt new behaviours through platforms such as mobile games, mobile applications, and social media. Existing PT are developed using personalization models that are not adaptive to the user's current situation while engaging with the system. My recent research indicates that PT developed with personalized models of persuasion have a greater efficacy than non-personalized ones. Understanding how technology can influence behaviour is at the forefront of human-computer interaction. Accurately reflecting individual human behaviour through machine learning algorithms remains an open challenge. My long-term vision is to develop data-driven trusted PT that can empower users and motivate them to achieve goals that are important to them and society. Underpinning effective PT are complex algorithms, and currently, there are no methodologies to incorporate individualized user personalization that are adaptive to changes in user preferences. The short-term objectives of this Discovery Grant research program include: 1) to develop novel adaptive data-driven personalization models for PT, 2) to design, develop and evaluate personalized persuasive systems using the novel personalization models in the domains of e-learning and serious games, and 3) to model trust and ethics in the design and development of persuasive systems. For the first objective, I will develop novel personalization models using Bayesian machine learning algorithms to compute the probability of success of a persuasive message or visualization when presented to a user. For the second objective, I will apply this novel personalization model in the design and development of an adaptive e-learning platform to overcome the non-adaptive setback of current e-learning PT. I will also use the novel personalization model to develop serious games for healthy nutrition. To achieve the third objective, I will develop an ethical framework to increase people's trust in PT. There is currently no PT design framework for designing ethical and trustworthy PT to enhance their use. To create the framework, I will develop multiple prototype systems to simulate various ethical scenarios to identify users' trustworthiness. Through developing state-of-the-art algorithms that can characterize complex human-computer interactions in a dynamic personalized manner, my research will be among the first globally to advance personalized PT in a manner that dynamically incorporates a user's current situation, which has far-reaching applications across numerous domains such as e-learning and healthy nutrition. My research will result in the first framework for ethical PT design which can guide future development in this area. HQP will gain experience from research design to evaluation and implementation and will enhance their data mining and software development skills which are beneficial to their future careers in academia or industry.
说服性技术(PT)是一种互动系统,通过手机游戏、移动的应用程序和社交媒体等平台激励和帮助人们采用新的行为。现有的PT是使用个性化模型开发的,这些模型在使用系统时不适应用户的当前情况。我最近的研究表明,用个性化的说服模型开发的PT比非个性化的有更大的功效。了解技术如何影响行为是人机交互的最前沿。通过机器学习算法准确反映人类个体行为仍然是一个开放的挑战。我的长期愿景是开发数据驱动的可信PT,可以授权用户并激励他们实现对他们和社会都很重要的目标。支撑有效PT的是复杂的算法,并且目前,没有方法来结合适应用户偏好变化的个性化用户个性化。这个发现补助金研究计划的短期目标包括:1)为PT开发新的自适应数据驱动的个性化模型,2)在电子学习和严肃游戏领域使用新的个性化模型设计,开发和评估个性化的说服系统,以及3)在说服系统的设计和开发中建立信任和道德模型。对于第一个目标,我将使用贝叶斯机器学习算法开发新的个性化模型,以计算呈现给用户的说服性消息或可视化的成功概率。对于第二个目标,我将应用这个新的个性化模型在设计和开发一个自适应的电子学习平台,以克服目前的电子学习PT的非适应挫折。我还将使用新颖的个性化模型来开发健康营养的严肃游戏。为了实现第三个目标,我将建立一个道德框架,以增加人们对PT的信任。目前还没有PT设计框架来设计道德和值得信赖的PT,以提高其使用。为了创建这个框架,我将开发多个原型系统来模拟各种道德场景,以识别用户的可信度。通过开发最先进的算法,可以以动态个性化的方式表征复杂的人机交互,我的研究将是全球第一个以动态结合用户当前情况的方式推进个性化PT的研究,它在许多领域都有深远的应用,如电子商务,学习和健康营养。我的研究将导致道德PT设计的第一个框架,可以指导这一领域的未来发展。HQP将获得从研究设计到评估和实施的经验,并将提高他们的数据挖掘和软件开发技能,这有利于他们未来在学术界或工业界的职业生涯。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Adaji, Ifeoma其他文献

Social cognitive determinants of exercise behavior in the context of behavior modeling: a mixed method approach
  • DOI:
    10.1177/2055207618811555
  • 发表时间:
    2018-11-14
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Oyibo, Kiemute;Adaji, Ifeoma;Vassileva, Julita
  • 通讯作者:
    Vassileva, Julita

Adaji, Ifeoma的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Adaji, Ifeoma', 18)}}的其他基金

Developing personalized persuasive technologies using an adaptive and data-driven approach
使用自适应和数据驱动的方法开发个性化说服技术
  • 批准号:
    DGECR-2022-00377
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Launch Supplement

相似海外基金

Personalized Online Adaptive Learning System
个性化在线自适应学习系统
  • 批准号:
    23K20186
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Personalized Maternal Care Decision Support System for Underserved Populations
职业:针对服务不足人群的个性化孕产妇护理决策支持系统
  • 批准号:
    2339992
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Continuing Grant
CAREER: Personalized, wearable robot mobility assistance considering human-robot co-adaptation that incorporates biofeedback, user coaching, and real-time optimization
职业:个性化、可穿戴机器人移动辅助,考虑人机协同适应,结合生物反馈、用户指导和实时优化
  • 批准号:
    2340519
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Continuing Grant
Realizing Human Brain Stimulation of Deep Regions Based on Novel Personalized Electrical Computational Modelling
基于新型个性化电计算模型实现人脑深部刺激
  • 批准号:
    23K25176
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Prediction, Monitoring and Personalized Recommendations for Prevention and Relief of Dementia and Frailty
预防和缓解痴呆症和衰弱的预测、监测和个性化建议
  • 批准号:
    10103541
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    EU-Funded
Modular Laser Sources For Sustainable Production Of Short Personalized Production Series (WAVETAILOR)
用于短个性化生产系列可持续生产的模块化激光源 (WAVETAILOR)
  • 批准号:
    10091981
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    EU-Funded
5G4PHealth: Enhanced 5G-Powered Platform for Predictive Preventive Personalized and Participatory Healthcare
5G4PHealth:增强型 5G 支持平台,用于预测、预防、个性化和参与式医疗保健
  • 批准号:
    10093679
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative R&D
Biomarker-Based Platform for Early Diagnosis of Chronic Liver Disease to Enable Personalized Therapy (LIVERAIM)
基于生物标志物的慢性肝病早期诊断平台,以实现个性化治疗(LIVERAIM)
  • 批准号:
    10087822
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    EU-Funded
Parent-adolescent informant discrepancies: Predicting suicide risk and treatment outcomes
父母与青少年信息差异:预测自杀风险和治疗结果
  • 批准号:
    10751263
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
HSI Implementation and Evaluation Project: Increasing Computer Science Undergraduate Retention through Predictive Modeling and Early, Personalized Academic Interventions
HSI 实施和评估项目:通过预测建模和早期个性化学术干预提高计算机科学本科生的保留率
  • 批准号:
    2345378
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了