Advancing Object Detection and Tracking Frontiers in Intelligent Vision-Based Applications
推进基于智能视觉的应用中的物体检测和跟踪前沿
基本信息
- 批准号:RGPIN-2022-03015
- 负责人:
- 金额:$ 2.4万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Object detection and tracking (ODT) is considered a cornerstone in most intelligent vision-based applications. We define object detection as the broad research area that identifies the presence of objects of certain classes (the well-known Classification task) and localizes their position. Object tracking identifies the trajectories of the same objects over time in a video or a sequence of images. The intelligent vision-based applications market is expected to grow from $12.2 billion in 2021 to $20.5 billion in 2027. Many domains rely on these intelligent vision-based applications, including drone vision, intelligent video surveillance, autonomous driving, medical and health applications, and security. Recently, state-of-the-art ODT models have achieved great success using supervised learning with the aid of massive labelled training datasets, even surpassing human-level performance in some cases (e.g. classification on ImageNet). However, these models are still limited in terms of the scope of the problems they can solve, and they need to "increase their out-of-domain robustness." In other words, they perform well on the specialized tasks in the specific domains they have been trained on (in-distribution), but when a domain shift happens, they "are often brittle outside of the narrow domain or scope they have been trained on," as noted in a recent July 2021 article by the Turing Award winners Bengio, LeCun, and Hinton. Adapting to domain shifts is natural to humans but is still a massive challenge for intelligent vision-based applications. A recent tragic real-life example is a March 2018 fatal collision resulting from the vision system of a self-driving car miss-classifying a pedestrian for whole six seconds during the night as different classes of objects moving at different speeds in different frames (unknown object, then as a vehicle, and finally as a bicycle). Hence, it is critical for ODT performance to be both highly accurate and consistent under different scenarios and shifts. In doing so, this will help us to progress towards developing reliable, intelligent systems that can learn and adapt much like humans. The long-term objective of this research program is to advance intelligent vision-based applications through developing and creating the next-generation object detection and tracking models. More specifically, in the short term, over the next five years, I will address the following two themes: 1) developing new techniques for domain generalization in object detection and 2) developing new techniques for robust cross-domain appearance models in object tracking. This research program will provide training to at least 13 HQP, helping them build strong backgrounds in advanced topics in image processing, computer vision, deep learning, optimization, and computational complexity analysis.
目标检测和跟踪(ODT)被认为是大多数智能视觉应用的基石。我们将对象检测定义为一个广泛的研究领域,它可以识别某些类别的对象的存在(众所周知的分类任务)并定位它们的位置。对象跟踪识别视频或图像序列中相同对象随时间的轨迹。智能视觉应用市场预计将从2021年的122亿美元增长到2027年的205亿美元。许多领域都依赖于这些基于智能视觉的应用,包括无人机视觉、智能视频监控、自动驾驶、医疗和健康应用以及安全。最近,最先进的ODT模型在大量标记训练数据集的帮助下使用监督学习取得了巨大成功,在某些情况下甚至超过了人类水平的性能(例如ImageNet上的分类)。然而,这些模型在它们可以解决的问题范围方面仍然受到限制,并且它们需要“提高它们的域外鲁棒性”。“换句话说,他们在特定领域的专业任务上表现良好,但当领域发生变化时,他们“在狭窄的领域或范围之外往往很脆弱,”正如图灵奖获得者Bengio,LeCun和欣顿最近在2021年7月的一篇文章中指出的那样。适应领域的变化对人类来说是很自然的,但对于基于智能视觉的应用程序来说仍然是一个巨大的挑战。最近的一个悲惨的现实例子是2018年3月的致命碰撞,这是由于自动驾驶汽车的视觉系统在夜间将行人错误分类为在不同帧中以不同速度移动的不同类别的物体(未知物体,然后是车辆,最后是自行车)。因此,在不同的场景和班次下,ODT性能的高度准确性和一致性至关重要。通过这样做,这将有助于我们朝着开发可靠的智能系统的方向发展,这些系统可以像人类一样学习和适应。该研究计划的长期目标是通过开发和创建下一代目标检测和跟踪模型来推进基于智能视觉的应用。更具体地说,在短期内,在未来五年内,我将解决以下两个主题:1)开发对象检测中的域泛化新技术,2)开发对象跟踪中的鲁棒跨域外观模型新技术。该研究计划将为至少13名HQP提供培训,帮助他们在图像处理,计算机视觉,深度学习,优化和计算复杂性分析等高级主题方面建立强大的背景。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shehata, Mohamed其他文献
A Novel CNN-Based CAD System for Early Assessment of Transplanted Kidney Dysfunction
- DOI:
10.1038/s41598-019-42431-3 - 发表时间:
2019-04-11 - 期刊:
- 影响因子:4.6
- 作者:
Abdeltawab, Hisham;Shehata, Mohamed;El-Baz, Ayman - 通讯作者:
El-Baz, Ayman
Prevalence and predictive value of anti-cyclic citrullinated protein antibodies for future development of rheumatoid arthritis in early undifferentiated arthritis
- DOI:
10.1007/s10165-010-0286-6 - 发表时间:
2010-08-01 - 期刊:
- 影响因子:2.2
- 作者:
Emad, Yasser;Shehata, Mohamed;Abou-Zeid, Alaa - 通讯作者:
Abou-Zeid, Alaa
Red blood cell distribution width and coronary artery disease severity in diabetic patients
- DOI:
10.2217/fca-2018-0066 - 发表时间:
2019-09-01 - 期刊:
- 影响因子:1.7
- 作者:
Khalil, Abdelrahman;Shehata, Mohamed;Onsy, Ahmed - 通讯作者:
Onsy, Ahmed
Understanding thermal and organic solvent stability of thermoalkalophilic lipases: insights from computational predictions and experiments
- DOI:
10.1007/s00894-020-04396-3 - 发表时间:
2020-05-08 - 期刊:
- 影响因子:2.2
- 作者:
Shehata, Mohamed;Timucin, Emel;Sezerman, Osman Ugur - 通讯作者:
Sezerman, Osman Ugur
A Multiple Classifier System to improve mapping complex land covers: a case study of wetland classification using SAR data in Newfoundland, Canada
- DOI:
10.1080/01431161.2018.1468117 - 发表时间:
2018-01-01 - 期刊:
- 影响因子:3.4
- 作者:
Amani, Meisam;Salehi, Bahram;Shehata, Mohamed - 通讯作者:
Shehata, Mohamed
Shehata, Mohamed的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shehata, Mohamed', 18)}}的其他基金
Vision algorithms for Emerging Applications
新兴应用的视觉算法
- 批准号:
RGPIN-2015-04974 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Vision algorithms for Emerging Applications
新兴应用的视觉算法
- 批准号:
RGPIN-2015-04974 - 财政年份:2020
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Vision algorithms for Emerging Applications
新兴应用的视觉算法
- 批准号:
RGPIN-2015-04974 - 财政年份:2019
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Vision algorithms for Emerging Applications
新兴应用的视觉算法
- 批准号:
RGPIN-2015-04974 - 财政年份:2018
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Vision algorithms for Emerging Applications
新兴应用的视觉算法
- 批准号:
RGPIN-2015-04974 - 财政年份:2017
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Vision algorithms for Emerging Applications
新兴应用的视觉算法
- 批准号:
RGPIN-2015-04974 - 财政年份:2016
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Vision algorithms for Emerging Applications
新兴应用的视觉算法
- 批准号:
RGPIN-2015-04974 - 财政年份:2015
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Unifying Object Detection and Image Captioning using Vision-Language Knowledge Base for Open-World Comprehension
使用视觉语言知识库统一对象检测和图像描述以实现开放世界理解
- 批准号:
24K20830 - 财政年份:2024
- 资助金额:
$ 2.4万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
EAGER: IMPRESS-U: Exploratory Research in Robust Machine Learning for Object Detection and Classification
EAGER:IMPRESS-U:用于对象检测和分类的鲁棒机器学习的探索性研究
- 批准号:
2415299 - 财政年份:2024
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Learning Methods and Applications for Real-World Object Detection
现实世界物体检测的学习方法和应用
- 批准号:
23K16896 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
RI: Small: Multilingual Supervision for Object Detection under Geographic Domain and Concept Shifts
RI:小型:地理领域和概念转变下目标检测的多语言监督
- 批准号:
2329992 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
HCC: Small: Robust Object Detection for Mobile Augmented Reality in the Wild
HCC:小型:用于野外移动增强现实的稳健物体检测
- 批准号:
2231975 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Responsive and Robust Object Detection for Industrial Point Cloud Applications
适用于工业点云应用的响应灵敏、鲁棒的物体检测
- 批准号:
567583-2021 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Alliance Grants
Monocular Vision System Development for Object Detection
用于物体检测的单目视觉系统开发
- 批准号:
573228-2022 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
University Undergraduate Student Research Awards
Drone Photography and Image Object Detection by AI for Automatic Bird Counting
利用人工智能进行无人机摄影和图像对象检测以实现自动鸟类计数
- 批准号:
22K12465 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of flying object detection system by detecting sound sources of compact, lightweight and low power consumption
开发紧凑、轻量、低功耗的检测声源飞行物体检测系统
- 批准号:
22H01434 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Deployment of LIDAR-Based 3D Object Detection on an Autonomous Vehicle
在自动驾驶车辆上部署基于 LIDAR 的 3D 物体检测
- 批准号:
562733-2021 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
University Undergraduate Student Research Awards