HCC: Small: Robust Object Detection for Mobile Augmented Reality in the Wild
HCC:小型:用于野外移动增强现实的稳健物体检测
基本信息
- 批准号:2231975
- 负责人:
- 金额:$ 59.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-11-01 至 2026-10-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Mobile augmented reality (AR), which integrates virtual objects with real environments, has shown outstanding potential in many areas including retail, education, and healthcare. The progress made in AR and machine learning over the last several years has given rise to opportunities to generate AR experiences that are well-matched with specific contexts, by leveraging the outputs of machine-learning-based object-detection algorithms that identify objects and their locations in the field of view of the AR device. However, existing object-detection methods are brittle, often making mistakes due to variations in lighting, object positions, device capabilities, and users’ actions. This project's goal, then, is to develop more robust object-detection methods and AR techniques that use them, grounded in real-world use cases. The motivating scenario is settings where a facility administrator would like users to benefit from object-detection-integrated AR experiences over the course of months or years: for example, teachers using AR-enhanced learning in a classroom, museum curators using AR to enrich visitors’ experience, or managers of a construction site or a factory deploying AR-based safety guidance for workers. The project team’s goal is to help administrators develop a variety of AR experiences with minimal workload, without placing restrictions on the state of the facility in terms of both its appearance and contents. This project will enable a wide range of context-aware AR applications, such as AR-based safety guidance, accessibility assistance, and support for health and well-being. The research will engage multiple diverse cohorts of undergraduate and high school students, both throughout the school year and on intense integrated summer research project experiences. Interactive demonstrations developed as part of this research will be showcased at K-12-oriented events. This project will enhance the reliability of AR object detectors on multiple dimensions, via the development of new AR-specific object-detection training approaches, performance monitoring techniques, input and output sanity-checking methods, and application interfaces. The work is divided into three thrusts. The first thrust will design and develop a robust AR object detection framework that will enhance the reliability of AR object detectors by adapting them to the conditions in a given location and by validating the correctness of AR object detectors’ inputs and outputs. The second thrust will examine the performance of AR object-detection algorithms across large and diverse groups of users and across a set of diverse AR devices; the team will design and develop mechanisms for adapting object detectors to specific users and devices with limited labeled data. The third thrust will examine the performance of AR object detectors in naturally changing environments across long-term deployments. This work will involve capturing a set of environments over a 12-month period, designing strategies for performance monitoring of AR object detectors, and developing approaches to maintain AR object detectors’ performance over time by future-proofing and retraining them.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
将虚拟对象与真实的环境集成在一起的移动的增强现实(AR)在零售、教育和医疗保健等许多领域表现出了出色的潜力。过去几年在AR和机器学习方面取得的进展,通过利用基于机器学习的对象检测算法的输出,产生了与特定上下文很好匹配的AR体验的机会,该算法识别AR设备视野中的对象及其位置。然而,现有的对象检测方法是脆弱的,经常由于照明、对象位置、设备能力和用户动作的变化而出错。因此,该项目的目标是开发更强大的对象检测方法和使用它们的AR技术,以现实世界的用例为基础。激励场景是设施管理员希望用户在数月或数年的时间内受益于对象检测集成的AR体验的设置:例如,教师在教室中使用AR增强学习,博物馆馆长使用AR丰富游客的体验,或者建筑工地或工厂的经理为工人部署基于AR的安全指导。项目团队的目标是帮助管理员以最小的工作量开发各种AR体验,而不会在外观和内容方面限制设施的状态。该项目将实现广泛的情境感知AR应用,例如基于AR的安全指导,无障碍辅助以及对健康和福祉的支持。该研究将涉及多个不同的本科生和高中生群体,无论是在整个学年,并在激烈的综合夏季研究项目的经验。作为这项研究的一部分开发的互动演示将在面向K-12的活动中展示。该项目将通过开发新的AR特定对象检测训练方法、性能监控技术、输入和输出健全性检查方法以及应用程序接口,提高AR对象检测器在多个维度上的可靠性。这项工作分为三个重点。第一个推力将设计和开发一个强大的AR对象检测框架,通过使它们适应给定位置的条件并验证AR对象检测器的输入和输出的正确性,来提高AR对象检测器的可靠性。第二个重点将研究AR对象检测算法在大量不同用户群体和一组不同AR设备中的性能;该团队将设计和开发使对象检测器适应特定用户和具有有限标记数据的设备的机制。第三个重点将研究AR对象检测器在长期部署的自然变化环境中的性能。这项工作将涉及在12个月的时间内捕获一组环境,设计增强现实物体探测器性能监控策略,并开发方法,通过未来验证和再培训来保持增强现实物体探测器的性能。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maria Gorlatova其他文献
Did You Do Well? Real-Time Personalized Feedback on Catheter Placement in Augmented Reality-Assisted Neurosurgical Training
你做得好吗?
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Sangjun Eom;Tiffany S Ma;Neha Vutakuri;Alexander Du;Zhehan Qu;Joshua Jackson;Maria Gorlatova - 通讯作者:
Maria Gorlatova
BiGuide: A Bi-level Data Acquisition Guidance for Object Detection on Mobile Devices
BiGuide:移动设备上物体检测的双层数据采集指南
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Lin Duan;Ying Chen;Zhehan Qu;Megan McGrath;E. Ehmke;Maria Gorlatova - 通讯作者:
Maria Gorlatova
AR Simulations in VR: The Case for Environmental Awareness
VR 中的 AR 模拟:环境意识案例
- DOI:
10.1109/vrw62533.2024.00289 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Ryleigh Byrne;Zhehan Qu;Christian Fronk;Sangjun Eom;T. Scargill;Maria Gorlatova - 通讯作者:
Maria Gorlatova
Maria Gorlatova的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maria Gorlatova', 18)}}的其他基金
Collaborative Research: CSR: Medium: Adaptive Environmental Awareness for Collaborative Augmented Reality
协作研究:企业社会责任:媒介:协作增强现实的自适应环境意识
- 批准号:
2312760 - 财政年份:2023
- 资助金额:
$ 59.98万 - 项目类别:
Continuing Grant
CAREER: Foundations of IoT-Supported Mobile Augmented Reality
职业:物联网支持的移动增强现实的基础
- 批准号:
2046072 - 财政年份:2021
- 资助金额:
$ 59.98万 - 项目类别:
Continuing Grant
CNS Core: Small: Collaborative Research: Towards Intelligent Multi-User Augmented Reality with Edge Computing
CNS 核心:小型:协作研究:利用边缘计算实现智能多用户增强现实
- 批准号:
1908051 - 财政年份:2019
- 资助金额:
$ 59.98万 - 项目类别:
Standard Grant
CSR: Small: Collaborative Research: Multi-tier Service Architecture in IoT-Edge-Cloud-Paradigms
CSR:小型:协作研究:物联网-边缘-云-范式中的多层服务架构
- 批准号:
1812797 - 财政年份:2018
- 资助金额:
$ 59.98万 - 项目类别:
Standard Grant
CSR: Small: Collaborative Research: Multi-tier Service Architecture in IoT-Edge-Cloud-Paradigms
CSR:小型:协作研究:物联网-边缘-云-范式中的多层服务架构
- 批准号:
1903136 - 财政年份:2018
- 资助金额:
$ 59.98万 - 项目类别:
Standard Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
CNS Core: Small: Toward Opportunistic, Fast, and Robust In-Cache AI Acceleration at the Edge
CNS 核心:小型:在边缘实现机会主义、快速且稳健的缓存内 AI 加速
- 批准号:
2228028 - 财政年份:2023
- 资助金额:
$ 59.98万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Robust and Private Federated Analytics on Networked Data
SaTC:核心:小型:网络数据的稳健且私密的联合分析
- 批准号:
2241100 - 财政年份:2023
- 资助金额:
$ 59.98万 - 项目类别:
Standard Grant
SHF: Small: Software and Hardware Support for Robust Deep Learning
SHF:小型:强大深度学习的软件和硬件支持
- 批准号:
2301334 - 财政年份:2023
- 资助金额:
$ 59.98万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Critical Learning Periods Augmented Robust Federated Learning
协作研究:SaTC:核心:小型:关键学习期增强鲁棒联邦学习
- 批准号:
2315613 - 财政年份:2023
- 资助金额:
$ 59.98万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Critical Learning Periods Augmented Robust Federated Learning
协作研究:SaTC:核心:小型:关键学习期增强鲁棒联邦学习
- 批准号:
2315612 - 财政年份:2023
- 资助金额:
$ 59.98万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
- 批准号:
2311596 - 财政年份:2023
- 资助金额:
$ 59.98万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
- 批准号:
2311598 - 财政年份:2023
- 资助金额:
$ 59.98万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Towards Robust, Scalable, and Resilient Radio Fingerprinting
协作研究:SaTC:核心:小型:迈向稳健、可扩展和有弹性的无线电指纹识别
- 批准号:
2225161 - 财政年份:2023
- 资助金额:
$ 59.98万 - 项目类别:
Standard Grant
Robust and Efficient Learning of High-Resolution Brain MRI Reconstruction from Small Referenceless Data
从小型无参考数据中稳健而高效地学习高分辨率脑 MRI 重建
- 批准号:
10584324 - 财政年份:2023
- 资助金额:
$ 59.98万 - 项目类别:
Collaborative Research: CIF: Small: Robust Machine Learning under Sparse Adversarial Attacks
协作研究:CIF:小型:稀疏对抗攻击下的鲁棒机器学习
- 批准号:
2236484 - 财政年份:2023
- 资助金额:
$ 59.98万 - 项目类别:
Standard Grant