Towards Quantitative Integration of Reliability and Resiliency into Roadway Design: AI-Aided Road Vulnerability Assessment and Stochastic Uncertainty Modelling
将可靠性和弹性定量整合到道路设计中:人工智能辅助道路脆弱性评估和随机不确定性建模
基本信息
- 批准号:RGPIN-2022-03201
- 负责人:
- 金额:$ 2.26万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Canada is home to one of the world's largest road networks. These roads are essential to the economic prosperity and mobility of Canadians. Assessing and enhancing the reliability and resiliency of road infrastructure is a timely and critical issue to transportation agencies due to the unprecedented challenges resulting from climate change (e.g. handling mass evacuation after a natural disaster), changes in road user demographics (e.g. accommodating an aging population), and the introduction of new forms of mobility (e.g. self-driving cars). To ensure that roads are prepared for, and able to handle, such challenges, there is demand for efficient and accurate methods to assess resiliency of existing roads. There is also a need for metrics for quantitative integration of resiliency into design. The long-term objective of my research is to transform the process of designing and managing road infrastructure into one that is data driven and resilient against uncertain events. I propose 3 objectives over the next 5 years to address critical knowledge gaps. First, I will develop novel Artificial Intelligence (AI) algorithms for efficient extraction of resiliency-critical road features from Light Detection and Ranging (LiDAR) and street-level imagery. LiDAR is a form of remote sensing that creates virtual 3D models (point clouds) of roads by driving a truck-mounted laser scanner along a road. Building on my past work, which has been utilized by municipal and provincial agencies, algorithms I develop in this program will employ a novel multi-scale segmentation strategy to automatically extract resiliency-critical features for proactive road assessment. Second, I will use statistical simulation to model uncertainty and assess reliability of existing road design elements extracted using the AI algorithms. I will use simulation results to propose novel resiliency performance indicators and design charts for quantitative integration of reliability into design. This research is pioneering since, to date, there are no means of quantitatively integrating reliability and resiliency into design in existing standards. Under the final objective I will use spatial statistics to assess road resiliency on an aggregate network level. Although segment-level reliability has been assessed, a network-level assessment is unprecedented. The proposed work will present Canadian transport agencies with new metrics and novel algorithms for proactive assessment of road resiliency and vulnerability. Besides facilitating resiliency assessments of existing roads, research outputs will establish standards for comparing resiliency of new design alternatives. This helps design more resilient roads and optimize the use of limited public funds when managing existing infrastructure. In this program I will train 2 PhDs, 2 MScs, and 5 Undergraduates in areas of machine learning, AI, statistical modeling, and GIS, which are highly sought-after skills in the Engineering market.
加拿大拥有世界上最大的公路网之一。这些道路对加拿大人的经济繁荣和流动性至关重要。由于气候变化(例如处理自然灾害后的大规模疏散)、道路使用者人口结构的变化(例如适应老龄化的人口)以及新的机动性形式的引入(例如自动驾驶汽车)造成的前所未有的挑战,评估和加强道路基础设施的可靠性和复原力对运输机构来说是一个及时和关键的问题。为了确保道路为这些挑战做好准备,并有能力应对这些挑战,需要有效和准确的方法来评估现有道路的弹性。还需要将弹性量化集成到设计中的指标。我研究的长期目标是将道路基础设施的设计和管理过程转变为数据驱动的过程,并对不确定事件具有弹性。我提出了未来5年的3个目标,以解决关键的知识差距。首先,我将开发新的人工智能(AI)算法,从光检测和测距(LiDAR)和街道图像中高效地提取弹性关键的道路特征。激光雷达是一种遥感形式,通过在道路上驾驶车载激光扫描仪来创建道路的虚拟3D模型(点云)。在我过去工作的基础上,我在这个项目中开发的算法将采用一种新颖的多尺度分割策略来自动提取弹性关键特征,用于主动进行道路评估。其次,我将使用统计模拟来建模不确定性,并评估使用人工智能算法提取的现有道路设计元素的可靠性。我将利用模拟结果提出新的弹性性能指标和设计图表,以便将可靠性定量地整合到设计中。这项研究是开创性的,因为到目前为止,在现有的标准中还没有将可靠性和弹性定量地整合到设计中的方法。在最后的目标下,我将使用空间统计来评估总体网络层面上的道路复原力。虽然已经评估了网段级别的可靠性,但网络级别的评估是史无前例的。拟议的工作将为加拿大运输机构提供新的衡量标准和新的算法,以主动评估道路弹性和脆弱性。除了促进现有道路的弹性评估外,研究成果还将建立标准,用于比较新设计替代方案的弹性。这有助于设计更具弹性的道路,并在管理现有基础设施时优化有限公共资金的使用。在这个项目中,我将在机器学习、人工智能、统计建模和地理信息系统等领域培训2名博士、2名硕士和5名本科生,这些都是工程市场上非常受欢迎的技能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gargoum, Suliman其他文献
Automated Extraction of Horizontal Curve Attributes using LiDAR Data
- DOI:
10.1177/0361198118758685 - 发表时间:
2018-12-01 - 期刊:
- 影响因子:1.7
- 作者:
Gargoum, Suliman;El-Basyouny, Karim;Sabbagh, Joseph - 通讯作者:
Sabbagh, Joseph
Automated Highway Sign Extraction Using Lidar Data
- DOI:
10.3141/2643-01 - 发表时间:
2017-01-01 - 期刊:
- 影响因子:1.7
- 作者:
Gargoum, Suliman;El-Basyouny, Karim;Froese, Kenneth - 通讯作者:
Froese, Kenneth
Enriching Roadside Safety Assessments Using LiDAR Technology: Disaggregate Collision-Level Data Fusion and Analysis
- DOI:
10.3390/infrastructures7010007 - 发表时间:
2022-01-01 - 期刊:
- 影响因子:2.6
- 作者:
Gargoum, Suliman;Karsten, Lloyd;Chen, Xinyu - 通讯作者:
Chen, Xinyu
Gargoum, Suliman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gargoum, Suliman', 18)}}的其他基金
Towards Quantitative Integration of Reliability and Resiliency into Roadway Design: AI-Aided Road Vulnerability Assessment and Stochastic Uncertainty Modelling
将可靠性和弹性定量整合到道路设计中:人工智能辅助道路脆弱性评估和随机不确定性建模
- 批准号:
DGECR-2022-00474 - 财政年份:2022
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Launch Supplement
相似海外基金
Integration of 5-ALA Fluorescence Lifetime Imaging with Stereotactic Surgical Navigation for Quantitative Real-Time Spatial Localization of Tumor During Neurosurgical Procedures
5-ALA 荧光寿命成像与立体定向手术导航相结合,用于神经外科手术过程中肿瘤的定量实时空间定位
- 批准号:
10578584 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
A Study on Learner State Estimation and Learner Experience Based on the Integration of Knowledge Structure and Quantitative Model
基于知识结构与定量模型融合的学习者状态估计与学习者体验研究
- 批准号:
23K02749 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A New Definition of Gastric Cancer Diversity through Quantitative Integration of histological and Genomic Information
通过组织学和基因组信息的定量整合对胃癌多样性的新定义
- 批准号:
22H04990 - 财政年份:2022
- 资助金额:
$ 2.26万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Towards Quantitative Integration of Reliability and Resiliency into Roadway Design: AI-Aided Road Vulnerability Assessment and Stochastic Uncertainty Modelling
将可靠性和弹性定量整合到道路设计中:人工智能辅助道路脆弱性评估和随机不确定性建模
- 批准号:
DGECR-2022-00474 - 财政年份:2022
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Launch Supplement
Doctoral Dissertation Research: Integration of Quantitative and Documentary Methodologies in the Analysis of a Segmentally-Rich Language
博士论文研究:定量和文献方法论在分析分段丰富语言中的整合
- 批准号:
1840668 - 财政年份:2019
- 资助金额:
$ 2.26万 - 项目类别:
Standard Grant
Integration of computational chemistry and machine learning for quantitative prediction of microscopic properties of polymers
计算化学和机器学习的集成用于定量预测聚合物的微观特性
- 批准号:
19K05372 - 财政年份:2019
- 资助金额:
$ 2.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Quantitative analysis on integration and price formation of Tokyo and Osaka stock markets before the Second World War
二战前东京和大阪股市一体化和价格形成的定量分析
- 批准号:
18K01734 - 财政年份:2018
- 资助金额:
$ 2.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Strengthening oral health workforce governance: a qualitative-quantitative investigation of workforce integration approaches in England and Australia
加强口腔保健劳动力治理:对英格兰和澳大利亚劳动力整合方法的定性-定量调查
- 批准号:
nhmrc : GNT1121576 - 财政年份:2017
- 资助金额:
$ 2.26万 - 项目类别:
Early Career Fellowships
Strengthening oral health workforce governance: a qualitative-quantitative investigation of workforce integration approaches in England and Australia
加强口腔保健劳动力治理:对英格兰和澳大利亚劳动力整合方法的定性-定量调查
- 批准号:
nhmrc : 1121576 - 财政年份:2017
- 资助金额:
$ 2.26万 - 项目类别:
Early Career Fellowships
Temporal dynamics of interaction strength in quantitative food webs: an integration of spatial food web theory with empirical patterns of host-parasitoid interactions
定量食物网中相互作用强度的时间动态:空间食物网理论与寄主-寄生物相互作用的经验模式的整合
- 批准号:
239329664 - 财政年份:2013
- 资助金额:
$ 2.26万 - 项目类别:
Research Fellowships