Cellular mechanisms controlling the expression and activity of sodium channels
控制钠通道表达和活性的细胞机制
基本信息
- 批准号:RGPIN-2021-03462
- 负责人:
- 金额:$ 2.62万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The electrical signal responsible for brain activity and muscle contraction is triggered by opening of small proteins called sodium channels, for their ability to control the flow of Na+ getting inside the cells. Nine sodium channel isotypes -labeled NaV because of their voltage-dependent opening- are currently known. Each of them possesses specific biochemical and pharmacological characteristics which, upon opening, generate an electrical current (INa) with unique properties. Cells exploit this diversity by expressing NaVs that confer to INa the attributes needed to ensure adequate response of neurons and muscles to variations in hormone and neurotransmitter during development or, to adapt to their environment. How cells select to express one NaV over the other is unknown. Moreover, some forms of adaptation to environmental or metabolic conditions trigger expression of NaV isoforms normally absent in some cell types. However, the cellular and genetic mechanisms regulating expression of NaVs during environmental or physiological stress is utterly unknown. Our research program of the next 5 years is divided in two parts. We first propose to use cardiac and neuronal cell models to determine the elements of the gene promoter of NaV1.1 (a neuronal channel) and NaV1.5 (a cardiac channel) that respectively restrict and promote the expression of each channel. To this end, we made DNA constructions (plasmids) such that the promoter of each channel is driving expression of a green fluorescent protein (GFP) that can be visualized by confocal microscopy. We will gradually shorten the length of each promoter until we can narrow them down an active region of a few nucleotides. We will next construct hybrid DNA plasmids with the promoter of NaV1.1 driving expression of NaV1.5 and vice--versa to identify repressor elements. We will thereafter use a novel method we are developing and mass spectrometry to pull down and identify transcription factors attached to each promoter. In the second part we will identify the intracellular cascades that selectively modulate the trafficking and the activity of NaVs. We will measure expression of their mRNA and protein and complement the data with electrical measurement of INa. Specific activators and inhibitors will be used to dissect each trafficking component. Once identified, we will link these mechanisms to stress stimulus known to modulate their activity. Our research program also includes the development of a novel method to identify transcription factors and a basis to understand how excitable cells regulate their electrical response and genomic targets to modulate expression of sodium channels. Such knowledge should prove useful to develop new compounds that can be used to enhance or reduce expression excitability in mammals and since molecules mediating electrical excitability in the fruit fly are generally similar to those in humans it will also enhance our arsenal to control insect populations.
负责大脑活动和肌肉收缩的电信号是由被称为钠通道的小蛋白质打开触发的,因为它们有能力控制Na+进入细胞的流动。目前已知有9种钠通道同型——由于它们的开度依赖于电压而被标记为NaV。它们中的每一个都具有特定的生化和药理学特征,一旦打开,就会产生具有独特性质的电流(INa)。细胞通过表达nav来利用这种多样性,nav赋予INa所需的属性,以确保神经元和肌肉在发育过程中对激素和神经递质的变化做出充分的反应,或适应环境。细胞如何选择表达一种NaV而不是另一种NaV是未知的。此外,对环境或代谢条件的某些适应形式会触发NaV亚型的表达,而NaV亚型通常在某些细胞类型中不存在。然而,在环境或生理应激下调控nav表达的细胞和遗传机制是完全未知的。我们未来5年的研究计划分为两部分。我们首先提出使用心脏和神经元细胞模型来确定分别限制和促进每个通道表达的NaV1.1(神经元通道)和NaV1.5(心脏通道)的基因启动子的元件。为此,我们制作了DNA结构(质粒),使得每个通道的启动子都驱动绿色荧光蛋白(GFP)的表达,可以通过共聚焦显微镜看到。我们将逐渐缩短每个启动子的长度,直到我们可以将它们缩小到几个核苷酸的活性区域。接下来,我们将构建NaV1.1启动子驱动NaV1.5表达的杂交DNA质粒,反之亦然,以鉴定抑制因子。此后,我们将使用我们正在开发的一种新方法和质谱法来提取和鉴定附着在每个启动子上的转录因子。在第二部分中,我们将确定选择性调节nav运输和活性的细胞内级联。我们将测量它们的mRNA和蛋白质的表达,并通过电测量INa来补充数据。将使用特定的激活剂和抑制剂来剖析每个贩运成分。一旦确定,我们将把这些机制与已知的调节其活动的压力刺激联系起来。我们的研究项目还包括开发一种识别转录因子的新方法,并为理解可兴奋细胞如何调节其电反应和基因组靶点来调节钠离子通道的表达奠定基础。这些知识应该被证明对开发新的化合物是有用的,这些化合物可以用来增强或降低哺乳动物的表达兴奋性,而且由于果蝇中介导电兴奋性的分子通常与人类相似,它也将增强我们控制昆虫种群的武器库。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dumaine, Robert其他文献
Modulation of canine cardiac sodium current by Apelin
- DOI:
10.1016/j.yjmcc.2009.12.011 - 发表时间:
2010-04-01 - 期刊:
- 影响因子:5
- 作者:
Chamberland, Caroline;Barajas-Martinez, Hector;Dumaine, Robert - 通讯作者:
Dumaine, Robert
Comparison of K+ currents in cardiac Purkinje cells isolated from rabbit and dog
- DOI:
10.1016/j.yjmcc.2006.10.019 - 发表时间:
2007-02-01 - 期刊:
- 影响因子:5
- 作者:
Dumaine, Robert;Cordeiro, Jonathan M. - 通讯作者:
Cordeiro, Jonathan M.
Lidocaine-induced Brugada syndrome phenotype linked to a novel double mutation in the cardiac sodium channel.
利多卡因诱导的布鲁格达综合征表型与心脏钠通道的新型双突变有关。
- DOI:
10.1161/circresaha.108.172619 - 发表时间:
2008-08-15 - 期刊:
- 影响因子:20.1
- 作者:
Barajas-Martinez, Hector M.;Hu, Dan;Cordeiro, Jonathan M.;Wu, Yuesheng;Kovacs, Richard J.;Meltser, Henry;Kui, Hong;Elena, Burashnikov;Brugada, Ramon;Antzelevitch, Charles;Dumaine, Robert - 通讯作者:
Dumaine, Robert
Larger dispersion of INa in female dog ventricle as a mechanism for gender-specific incidence of cardiac arrhythmias
- DOI:
10.1093/cvr/cvn255 - 发表时间:
2009-01-01 - 期刊:
- 影响因子:10.8
- 作者:
Barajas-Martinez, Hector;Haufe, Volker;Dumaine, Robert - 通讯作者:
Dumaine, Robert
Prolongation of Action Potential Duration and QT Interval During Epilepsy Linked to Increased Contribution of Neuronal Sodium Channels to Cardiac Late Na+ Current Potential Mechanism for Sudden Death in Epilepsy
- DOI:
10.1161/circep.114.002693 - 发表时间:
2015-08-01 - 期刊:
- 影响因子:8.4
- 作者:
Biet, Michael;Morin, Nathalie;Dumaine, Robert - 通讯作者:
Dumaine, Robert
Dumaine, Robert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dumaine, Robert', 18)}}的其他基金
Cellular mechanisms controlling the expression and activity of sodium channels
控制钠通道表达和活性的细胞机制
- 批准号:
RGPIN-2021-03462 - 财政年份:2021
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Erk1/2/CREB/BDNF通路在CSF1R相关性白质脑病致病机制中的作用研究
- 批准号:82371255
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
Foxc2介导Syap1/Akt信号通路调控破骨/成骨细胞分化促进颞下颌关节骨关节炎的机制研究
- 批准号:82370979
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
MYRF/SLC7A11调控施万细胞铁死亡在三叉神经痛脱髓鞘病变中的作用和分子机制研究
- 批准号:82370981
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
Idh3a作为线粒体代谢—表观遗传检查点调控产热脂肪功能的机制研究
- 批准号:82370851
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
声致离子电流促进小胶质细胞M2极化阻断再生神经瘢痕退变免疫机制
- 批准号:82371973
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
GREB1突变介导雌激素受体信号通路导致深部浸润型子宫内膜异位症的分子遗传机制研究
- 批准号:82371652
- 批准年份:2023
- 资助金额:45.00 万元
- 项目类别:面上项目
用于小尺寸管道高分辨成像荧光聚合物点的构建、成像机制及应用研究
- 批准号:82372015
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
小脑浦肯野细胞突触异常在特发性震颤中的作用机制及靶向干预研究
- 批准号:82371248
- 批准年份:2023
- 资助金额:47.00 万元
- 项目类别:面上项目
相似海外基金
Cellular mechanisms controlling the expression and activity of sodium channels
控制钠通道表达和活性的细胞机制
- 批准号:
RGPIN-2021-03462 - 财政年份:2021
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Cellular Mechanisms Controlling the Phagocytosis of Aspergillus fumigatus by Macrophages
控制巨噬细胞吞噬烟曲霉的细胞机制
- 批准号:
565923-2021 - 财政年份:2021
- 资助金额:
$ 2.62万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Cellular and molecular mechanisms controlling sepsis-induced immunoparalyses state
控制脓毒症诱导的免疫麻痹状态的细胞和分子机制
- 批准号:
10557190 - 财政年份:2020
- 资助金额:
$ 2.62万 - 项目类别:
Cellular mechanisms controlling the phagocytosis of molds in macropahges
控制巨噬细胞中霉菌吞噬作用的细胞机制
- 批准号:
552047-2020 - 财政年份:2020
- 资助金额:
$ 2.62万 - 项目类别:
University Undergraduate Student Research Awards
Cellular mechanisms controlling cell migration in complex in vivo contexts
在复杂的体内环境中控制细胞迁移的细胞机制
- 批准号:
425389138 - 财政年份:2019
- 资助金额:
$ 2.62万 - 项目类别:
Research Grants
Novel mechanisms controlling the cellular stress response
控制细胞应激反应的新机制
- 批准号:
BB/R017883/1 - 财政年份:2018
- 资助金额:
$ 2.62万 - 项目类别:
Research Grant
ApoE: Cellular and Molecular Mechanisms Controlling Neuronal Viability
ApoE:控制神经元活力的细胞和分子机制
- 批准号:
9255575 - 财政年份:2017
- 资助金额:
$ 2.62万 - 项目类别:
Establishing the molecular and cellular mechanisms of Lgr5 signaling for controlling cancer stem cell behavior
建立 Lgr5 信号传导控制癌症干细胞行为的分子和细胞机制
- 批准号:
9764146 - 财政年份:2017
- 资助金额:
$ 2.62万 - 项目类别:
Establishing the molecular and cellular mechanisms of Lgr5 signaling for controlling cancer stem cell behavior
建立 Lgr5 信号传导控制癌症干细胞行为的分子和细胞机制
- 批准号:
9224155 - 财政年份:2017
- 资助金额:
$ 2.62万 - 项目类别:
Cellular Mechanisms Controlling RGS2 Degradation In Vitro
体外控制 RGS2 降解的细胞机制
- 批准号:
304313 - 财政年份:2014
- 资助金额:
$ 2.62万 - 项目类别:














{{item.name}}会员




